Terriglobus roseus

Last updated

Terriglobus roseus
Terriglobus roseus NRRL B-41598 (Type Strain).jpg
Scientific classification Red Pencil Icon.png
Domain: Bacteria
Phylum: Acidobacteriota
Class: "Acidobacteriia"
Order: Acidobacteriales
Family: Acidobacteriaceae
Genus: Terriglobus
Species:
T. roseus
Binomial name
Terriglobus roseus
Eichorst et al. 2007 [1]

Terriglobus roseus is a bacterium belonging to subdivision 1 of the Acidobacteriota phylum, and is closely related to the genera Granulicella and Edaphobacter . [1] T. roseus was the first species recognized in the genus Terriglobus in 2007. [2] This bacterial species is extremely abundant and diverse in agricultural soils. T. roseus is an aerobic Gram-negative rod lacking motility. This bacteria can produce extracellular polymeric substances (EPS) to form a biofilm, or extracellular matrix, for means of protection, communication amongst neighboring cells, etc. Its type strain is KBS 63. [1]

Contents

As implied by its name, on solid media, the bacterial colonies produce a pink pigmentation, indicating the presence of carotenoids. T. roseus grows best at room temperature (23 °C) in a liquid media called R2B, containing peptone, casamino acids, yeast extract, glucose, soluble starch, sodium pyruvate and inorganic salts. Although T. roseus is found in soil and sediment environments, it is highly difficult to culture Acidobacteriota in lab settings. Currently, there is no sufficient growth media that allows for T. roseus to grow in soil. This species optimal pH for growth is pH6, however this species can survive in acidic conditions as low as pH 5. [1]

Ecology

T. roseus, common among all Acidobacteriota, is ubiquitous in soil environments with low nutrient availability, and are relatively wide-spread throughout the soil. Its high abundance in agricultural soils suggests that T. roseus plays a critical role in nutrient cycling. The ability for T. roseus to produce EPS serves many possible benefits to this bacteria and its surrounding environment. Production of biofilms can aid to protect T. roseus and other organisms inhabiting the extracellular matrix, collect water and nutrients for easier accessibility, and could potentially play a role in forming soil aggregates, which would allow for more flow of water and air through the biofilm community. [1]

Metabolism

T. roseus is an aerobic bacterium that is catalase positive and oxidase negative. Although these bacteria are aerobic, T. roseus is capable of surviving at atmospheric concentrations as low as 2% oxygen. These bacteria are chemo-organotrophs, meaning they create energy by oxidizing organic matter, making them versatile in terms of generating energy. T. roseus was found to oxidize glucose, fructose, galactose, mannose, xylose, sucrose, maltose, arabinose, cellobiose, and many more organic compounds. However, T. roseus is unable to utilize mannitol, carboxymethyl cellulose, sodium acetate, sodium pyruvate or monomers of lignin compounds. [1]

In lab culture, T. roseus has demonstrated an increase of growth correlating with several factors, including elevated carbon dioxide levels, decreased availability of nutrients and carbon sources, and additional polymeric substrates to induce growth and enzyme activity, like xylan and chitosan. T. roseus has a slow growth rate, suggesting these bacteria are oligotrophic microorganisms. [1]

Genomic features

The genome of T. roseus is nearly 5.25 million base pairs long with a 60% GC content. Its genome has an interestingly high percentage of repeat sequences at 18% of all DNA. [3] T. roseus has two copies of its 16S ribosomal RNA, which is suggestive evidence that T. roseus is an oligotroph, in addition to its slow growth rate and low nutrient sources. [1] Previous research has shown a correlation between the number of copies of the 16S rRNA and the relative metabolism of the organism. [4] The low number of copies of 16S rRNA in T. roseus supports the slow growth rate of the bacteria. [1]

Although there has been an increase in research being performed on Acidobacteriota, more research is still needed to better understand how these bacteria, T. roseus in particular, contribute to the environment around them.

Related Research Articles

<span class="mw-page-title-main">Bacteroidota</span> Phylum of Gram-negative bacteria

The phylum Bacteroidota is composed of three large classes of Gram-negative, nonsporeforming, anaerobic or aerobic, and rod-shaped bacteria that are widely distributed in the environment, including in soil, sediments, and sea water, as well as in the guts and on the skin of animals.

<span class="mw-page-title-main">Acidobacteriota</span> Phylum of bacteria

Acidobacteriota is a phylum of Gram-negative bacteria. Its members are physiologically diverse and ubiquitous, especially in soils, but are under-represented in culture.

The Thermomicrobia is a group of thermophilic green non-sulfur bacteria. Based on species Thermomicrobium roseum and Sphaerobacter thermophilus, this bacteria class has the following description:

<i>Pseudomonas aeruginosa</i> Species of bacterium

Pseudomonas aeruginosa is a common encapsulated, gram-negative, aerobic–facultatively anaerobic, rod-shaped bacterium that can cause disease in plants and animals, including humans. A species of considerable medical importance, P. aeruginosa is a multidrug resistant pathogen recognized for its ubiquity, its intrinsically advanced antibiotic resistance mechanisms, and its association with serious illnesses – hospital-acquired infections such as ventilator-associated pneumonia and various sepsis syndromes.

<i>Pseudomonas stutzeri</i> Species of bacterium

Pseudomonas stutzeri is a Gram-negative soil bacterium that is motile, has a single polar flagellum, and is classified as bacillus, or rod-shaped. While this bacterium was first isolated from human spinal fluid, it has since been found in many different environments due to its various characteristics and metabolic capabilities. P. stutzeri is an opportunistic pathogen in clinical settings, although infections are rare. Based on 16S rRNA analysis, this bacterium has been placed in the P. stutzeri group, to which it lends its name.

Chloracidobacterium is a genus of the Acidobacteriota. It is currently assigned to the family Acidobacteriaceae, but phylogenetic evidence suggests that it belongs in Blastocatellia.

<i>Latilactobacillus sakei</i> Species of bacterium

Latilactobacillus sakei is the type species of the genus Latilactobacillus that was previously classified in the genus Lactobacillus. It is homofermentative; hexoses are metabolized via glycolysis to lactic acid as main metabolite; pentoses are fermented via the Phosphoketolase pathway to lactic and acetic acids.

Alteromonas macleodii is a species of widespread marine bacterium found in surface waters across temperate and tropical regions. First discovered in a survey of aerobic bacteria in 1972, A. macleodii has since been placed within the phylum Pseudomonadota and is recognised as a prominent component of surface waters between 0 and 50 metres. Alteromonas macleodii has a single circular DNA chromosome of 4.6 million base pairs. Variable regions in the genome of A. macleodii confer functional diversity to closely related strains and facilitate different lifestyles and strategies. Certain A. macleodii strains are currently being explored for their industrial uses, including in cosmetics, bioethanol production and rare earth mining.

Acidobacterium capsulatum is a bacterium. It is an acidophilic chemoorganotrophic bacterium containing menaquinone. It is gram-negative, facultative anaerobic, mesophilic, non-spore-forming, capsulated, saccharolytic and rod-shaped. It is also motile by peritrichous flagella. Its type strain is JCM 7670.

<i>Acidithiobacillus thiooxidans</i> Species of bacterium

Acidithiobacillus thiooxidans, formerly known as Thiobacillus thiooxidans until its reclassification into the newly designated genus Acidithiobacillus of the Acidithiobacillia subclass of Pseudomonadota, is a Gram-negative, rod-shaped bacterium that uses sulfur as its primary energy source. It is mesophilic, with a temperature optimum of 28 °C. This bacterium is commonly found in soil, sewer pipes, and cave biofilms called snottites. A. thiooxidans is used in the mining technique known as bioleaching, where metals are extracted from their ores through the action of microbes.

Rhodoferax is a genus of Betaproteobacteria belonging to the purple nonsulfur bacteria. Originally, Rhodoferax species were included in the genus Rhodocyclus as the Rhodocyclus gelatinous-like group. The genus Rhodoferax was first proposed in 1991 to accommodate the taxonomic and phylogenetic discrepancies arising from its inclusion in the genus Rhodocyclus. Rhodoferax currently comprises four described species: R. fermentans, R. antarcticus, R. ferrireducens, and R. saidenbachensis. R. ferrireducens, lacks the typical phototrophic character common to two other Rhodoferax species. This difference has led researchers to propose the creation of a new genus, Albidoferax, to accommodate this divergent species. The genus name was later corrected to Albidiferax. Based on geno- and phenotypical characteristics, A. ferrireducens was reclassified in the genus Rhodoferax in 2014. R. saidenbachensis, a second non-phototrophic species of the genus Rhodoferax was described by Kaden et al. in 2014.

Bryocella elongata is a bacterium, a type species of genus Bryocella. Cells are Gram-negative, non-motile pink-pigmented rods that multiply by normal cell division and form rosettes. The type strain is SN10(T). B. elongata was first isolated in 2011 from a methanotropic enrichment culture.

Deinococcus marmoris is a Gram-positive bacterium isolated from Antarctica. As a species of the genus Deinococcus, the bacterium is UV-tolerant and able to withstand low temperatures.

Symbiobacterium thermophilum is a symbiotic thermophile that depends on co-culture with a Bacillus strain for growth. It is Gram-negative and tryptophanase-positive, with type strain T(T). It is the type species of its genus. Symbiobacterium is related to the Gram-positive Bacillota and Actinomycetota, but belongs to a lineage that is distinct from both.S. thermophilum has a bacillus shaped cell structure with no flagella. This bacterium is located throughout the environment in soils and fertilizers.

Congregibacter litoralis KT71 is a gram-negative Gammaproteobacteria part of the NOR5/OM60 Clade discovered in seawater from Heligoland, an island in the North Sea by H. Eilers from the Max Planck Institute for Microbiology. C. litoralis KT71 is described as a pleomorphic bacterium and has a size of 2 x 0.5 μm. When grown in culture, C. litoralis KT71 has a generation time of 4.5 hours and prefers to grow on complex substrates where the sole carbon source is undefined, though it can utilize some sole carbon sources because they are most likely used by the organism for its central metabolism.

Koribacter versatilis is a member of the Acidobacteriota phylum which itself is a newly devised phylum of bacteria, and is only distantly related to other organisms in the domain bacteria. Its closest phylogenetic relative is "Candidatus Solibacter usitatus", according to Michael Nerdahl. It contains 5,650,368 nucleotides, 4,777 proteins, and 55 RNA genes, and has a circular chromosome according to information found from GenBank. According to the Joint Genome Institute, “The bacterium is a gram-negative, highly capsulated, aerobic heterotroph that grows with a range of sugars, sugar polymers, and some organic acids.”

Dokdonia donghaensis is a strictly aerobic, gram-negative, phototrophic bacterium that thrives in marine environments. The organism can grow at a broad range of temperatures on seawater media. It has the ability to form biofilms, which increases the organism's resistance to antimicrobial agents, such as tetracycline.

Dokdonia is a genus of bacteria in the family Flavobacteriaceae and phylum Bacteroidota.

Cytophagales is an order of non-spore forming, rod-shaped, Gram-negative bacteria that move through a gliding or flexing motion. These chemoorganotrophs are important remineralizers of organic materials into micronutrients. They are widely dispersed in the environment, found in ecosystems including soil, freshwater, seawater and sea ice. Cytophagales is included in the Bacteroidota phylum.

The Holophagae is a class of Acidobacteriota.

References

  1. 1 2 3 4 5 6 7 8 9 Eichorst, S.A., Breznak, J.A., and Schmidt, T.M. "Isolation and characterization of soil bacteria that define Terriglobus gen. nov., in the phylum Acidobacteria." Appl. Environ. Microbiol. (2007) 73:2708–2717
  2. "Complete Genome Sequence of Terriglobus saanensis Type Strain SP1PR4 T , an Acidobacteria from Tundra Soil."
  3. "Next Generation Sequencing Data of a Defined Microbial Mock Community."
  4. rRNA operon copy number reflects ecological strategies of bacteria

1. Eichorst, Stephanie A., John A. Breznak, and Thomas M. Schmidt. "Isolation and Characterization of Soil Bacteria That Define Terriglobus Gen. Nov., in the Phylum Acidobacteria." Applied and Environmental Microbiology. American Society for Microbiology, 15 Apr. 2007. Web. 11 Dec. 2018.

2.^ Suman R. Rawat, Minna K. Männistö, Valentin Starovoytov, Lynne Goodwin, Matt Nolan, Lauren Hauser, Miriam Land, Karen Walston Davenport, Tanja Woyke, and Max M. Häggblom. "Complete Genome Sequence of Terriglobus saanensis Type Strain SP1PR4 T , an Acidobacteria from Tundra Soil." Standards in Genomic Sciences. BioMed Central, 10 Oct. 2012. Web. 11 Dec. 2018.

3. Singer, Esther, Bill Andreopoulos, Robert M. Bowers, Janey Lee, Shweta Deshpande, Jennifer Chiniquy, Doina Ciobanu, Hans-Peter Klenk, Matthew Zane, Christopher Daum, Alicia Clum, Jan-Fang Cheng, Alex Copeland, and Tanja Woyke. "Next Generation Sequencing Data of a Defined Microbial Mock Community." Nature News. Nature Publishing Group, 27 Sept. 2016. Web. 11 Dec. 2018.

4. Klappenbach, J. A., J. M. Dunbar, and T. M. Schmidt. 2000. rRNA operon copy number reflects ecological strategies of bacteria. Appl. Environ. Mi- crobiol. 66:1328–1333.