Testicular sperm extraction

Last updated
Testicular sperm extraction
Figure 28 01 03.JPG
Tissue is extracted from the seminiferous tubules during surgery in TESE
Specialty Reproductive medicine

Testicular sperm extraction (TESE) is a surgical procedure in which a small portion of tissue is removed from the testicle and any viable sperm cells from that tissue are extracted for use in further procedures, most commonly intracytoplasmic sperm injection (ICSI) as part of in vitro fertilisation (IVF). [1] TESE is often recommended to patients who cannot produce sperm by ejaculation due to azoospermia. [2]

Contents

Medical uses

TESE is recommended to patients who do not have sperm present in their ejaculate, azoospermia, or who cannot ejaculate at all. In general, azoospermia can be divided into obstructive and non-obstructive subcategories.[ citation needed ]

TESE is primarily used for non-obstructive azoospermia, where patients do not have sperm present in the ejaculate but who may produce sperm in the testis. Azoospermia in these patients could be a result of Y chromosome microdeletions, cancer of the testicles or damage to the pituitary gland or hypothalamus, which regulate sperm production. Often in these cases, TESE is used as a second option, after prior efforts to treat the azoospermia through hormone therapy have failed. [3]

However, if azoospermia is related to a disorder of sexual development, such as Klinefelter syndrome, TESE is not used clinically; as of 2016, this was in the research phase. [4]

More rarely, TESE is used to extract sperm in cases of obstructive azoospermia. [5] Obstructive azoospermia can be caused in a variety of ways:

TESE can also be used as a fertility preservation option for patients undergoing gender reassignment surgery and who cannot ejaculate sperm. [7]

Technique

Conventional TESE is usually performed under local, or sometimes spinal or general, anaesthesia. [8] [9] An incision in the median raphe of the scrotum is made and continued through the dartos fibres and the tunica vaginalis. The testicle and epidydymis are then visible. [10] Incisions are then made through the outer covering of the testis to retrieve biopsies of seminiferous tubules, which are the structures that contain sperm. The incision is closed with sutures and each sample is assessed under a microscope to confirm the presence of sperm. [8]

Following extraction, sperm is often cryogenically preserved for future use, but can also be used fresh. [11]

Micro-TESE

Micro-TESE, or microdissection testicular sperm extraction, includes the use of an operating microscope. This allows the surgeon to observe regions of seminiferous tubules of the testes that have more chance of containing spermatozoa. [2] The procedure is more invasive than conventional TESE, requiring general anaesthetic, and usually used only in patients with non-obstructive azoospermia. [12] Similarly to TESE, an incision is made in the scrotum and surface of the testicle to expose seminiferous tubules. However, this exposure is much more wide in micro-TESE. This allows exploration of the incision under the microscope to identify areas of tubules more likely to contain more sperm. If none can be identified, biopsies are instead taken at random from a wide range of locations. The incision is closed with sutures. Samples are re-examined post-surgery to locate and then purify sperm. [8]

When compared with FNA of the testis, conventional TESE is 2-fold more effective at identifying sperm in men with non-obstructive azoospermia. Compared with conventional TESE, micro-TESE has about 1.5-fold higher success in extracting sperm; as such, micro-TESE is preferable in cases of non-obstructive azoospermia< , where infertility is caused by a lack of sperm production rather than a blockage. [13] In these cases, micro-TESE is more likely to yield sufficient sperm for use in ICSI. [14]

TESE vs TESA

TESE is different to testicular sperm aspiration (TESA). TESA is done under local anaesthesia, does not involve an open biopsy and is suitable for patients with obstructive azoospermia. [13]

Complications

Micro-TESE and TESE have risks of postoperative infection, bleeding and pain. [10] TESE can result in testicular abnormalities and scarring of the tissue. The procedure can cause testicular fibrosis and inflammation, which can reduce testicular function and cause testicular atrophy. [15] Both procedures can alter the steroid function of the testes causing a decline in serum testosterone levels, which can result in testosterone deficiency. [12] This can cause side-effects including muscle weakness, decreased sexual function, anxiety, leading to sleep deficiency. [16] The blood supply to the testis can also be altered during this procedure, potentially reducing supply. Long-term follow-ups are often recommended to prevent these complications. [12]

Micro-TESE has limited postoperative complications compared with TESE. The use of the surgical microscope allows for small specific incisions to retrieve seminiferous tubules and evade damaging blood vessels by avoiding regions with no vasculature. [3] [10]

If TESE needs to be repeated due to insufficient sperm recovery, patients are usually advised to wait 6–12 months in order to allow adequate healing of the testis before further surgery. [17]

See also

Related Research Articles

<span class="mw-page-title-main">Testicle</span> Internal organ in the male reproductive system

A testicle or testis is the male reproductive gland or gonad in all bilaterians, including humans. It is homologous to the female ovary. The functions of the testes are to produce both sperm and androgens, primarily testosterone. Testosterone release is controlled by the anterior pituitary luteinizing hormone, whereas sperm production is controlled both by the anterior pituitary follicle-stimulating hormone and gonadal testosterone.

<span class="mw-page-title-main">Vasectomy</span> Surgical procedure for male sterilization

Vasectomy, is an elective surgical procedure for male sterilization or permanent contraception. During the procedure, the male vasa deferentia are cut and tied or sealed so as to prevent sperm from entering into the urethra and thereby prevent fertilization of a female through sexual intercourse. Vasectomies are usually performed in a physician's office, medical clinic, or, when performed on an animal, in a veterinary clinic. Hospitalization is not normally required as the procedure is not complicated, the incisions are small, and the necessary equipment routine.

<span class="mw-page-title-main">Intracytoplasmic sperm injection</span> In vitro fertilization procedure

Intracytoplasmic sperm injection is an in vitro fertilization (IVF) procedure in which a single sperm cell is injected directly into the cytoplasm of an egg. This technique is used in order to prepare the gametes for the obtention of embryos that may be transferred to a maternal uterus. With this method, the acrosome reaction is skipped.

<span class="mw-page-title-main">Testicular cancer</span> Medical condition

Testicular cancer is cancer that develops in the testicles, a part of the male reproductive system. Symptoms may include a lump in the testicle or swelling or pain in the scrotum. Treatment may result in infertility.

<span class="mw-page-title-main">Epididymis</span> Tube that connects a testicle to a vas deferens

The epididymis is an elongated tubular structure attached to the posterior side of each one of the two male reproductive glands, the testicles. It is a single, narrow, tightly coiled tube in adult humans, {{convert|6 to 7|centimeters in length. It connects the testicle to the vas deferens in the male reproductive system. The epididymis serves as an interconnection between the multiple efferent ducts at the rear of a testicle (proximally), and the vas deferens (distally). Its primary function is the storage, maturation and transport of sperm cells.

<span class="mw-page-title-main">Hydrocele testis</span> Medical condition

A hydrocele testis is an accumulation of clear fluid within the cavum vaginale, the potential space between the layers of the tunica vaginalis of the testicle. It is the most common form of hydrocele and is often referred to simply as a "hydrocele". A primary hydrocele testis causes a painless enlargement in the scrotum on the affected side and is thought to be due to the defective absorption of fluid secreted between the two layers of the tunica vaginalis. A secondary hydrocele is secondary to either inflammation or a neoplasm in the testis.

<span class="mw-page-title-main">Spermatogenesis</span> Production of sperm

Spermatogenesis is the process by which haploid spermatozoa develop from germ cells in the seminiferous tubules of the testis. This process starts with the mitotic division of the stem cells located close to the basement membrane of the tubules. These cells are called spermatogonial stem cells. The mitotic division of these produces two types of cells. Type A cells replenish the stem cells, and type B cells differentiate into primary spermatocytes. The primary spermatocyte divides meiotically into two secondary spermatocytes; each secondary spermatocyte divides into two equal haploid spermatids by Meiosis II. The spermatids are transformed into spermatozoa (sperm) by the process of spermiogenesis. These develop into mature spermatozoa, also known as sperm cells. Thus, the primary spermatocyte gives rise to two cells, the secondary spermatocytes, and the two secondary spermatocytes by their subdivision produce four spermatozoa and four haploid cells.

<span class="mw-page-title-main">Orchiopexy</span> Surgery to fix a testicle into the scrotum

Orchiopexy is a surgery to move and/or permanently fix a testicle into the scrotum. While orchiopexy typically describes the operation to surgically correct an undescended testicle, it is also used to resolve testicular torsion.

<span class="mw-page-title-main">Spermatocele</span> Medical condition

Spermatocele is a fluid-filled cyst that develops in the epididymis. The fluid is usually a clear or milky white color and may contain sperm. Spermatoceles are typically filled with spermatozoa and they can vary in size from several millimeters to many centimeters. Small spermatoceles are relatively common, occurring in an estimated 30 percent of males. They are generally not painful. However, some people may experience discomfort such as a dull pain in the scrotum from larger spermatoceles. They are not cancerous, nor do they cause an increased risk of testicular cancer. Additionally, unlike varicoceles, they do not reduce fertility.

Vasovasostomy is a surgery by which vasectomies are partially reversed. Another surgery for vasectomy reversal is vasoepididymostomy.

<span class="mw-page-title-main">Azoospermia</span> Medical condition of a man whose semen contains no sperm

Azoospermia is the medical condition of a man whose semen contains no sperm. It is associated with male infertility, but many forms are amenable to medical treatment. In humans, azoospermia affects about 1% of the male population and may be seen in up to 20% of male infertility situations in Canada.

Male infertility refers to a sexually mature male's inability to impregnate a fertile female. In humans it accounts for 40–50% of infertility. It affects approximately 7% of all men. Male infertility is commonly due to deficiencies in the semen, and semen quality is used as a surrogate measure of male fecundity. More recently, advance sperm analyses that examine intracellular sperm components are being developed.

Spermatogenesis arrest is known as the interruption of germinal cells of specific cellular type, which elicits an altered spermatozoa formation. Spermatogenic arrest is usually due to genetic factors resulting in irreversible azoospermia. However some cases may be consecutive to hormonal, thermic, or toxic factors and may be reversible either spontaneously or after a specific treatment. Spermatogenic arrest results in either oligospermia or azoospermia in men. It is quite a difficult condition to proactively diagnose as it tends to affect those who have normal testicular volumes; a diagnosis can be made however through a testicular biopsy.

<span class="mw-page-title-main">Sertoli cell-only syndrome</span> Medical condition

Sertoli cell-only syndrome (SCOS), also known as germ cell aplasia, is defined by azoospermia where the testicular seminiferous tubules are lined solely with sertoli cells. Sertoli cells contribute to the formation of the blood-testis barrier and aid in sperm generation. These cells respond to follicle-stimulating hormone, which is secreted by the hypothalamus and aids in spermatogenesis.

Vasectomy reversal is a term used for surgical procedures that reconnect the male reproductive tract after interruption by a vasectomy. Two procedures are possible at the time of vasectomy reversal: vasovasostomy and vasoepididymostomy. Although vasectomy is considered a permanent form of contraception, advances in microsurgery have improved the success of vasectomy reversal procedures. The procedures remain technically demanding and may not restore the pre-vasectomy condition.

FNA mapping is an application of fine-needle aspiration (FNA) to the testis for the diagnosis of male infertility. FNA cytology has been used to examine pathological human tissue from various organs for over 100 years. As an alternative to open testicular biopsy for the last 40 years, FNA mapping has helped to characterize states of human male infertility due to defective spermatogenesis. Although recognized as a reliable, and informative technique, testis FNA has not been widely used in U.S. to evaluate male infertility. Recently, however, testicular FNA has gained popularity as both a diagnostic and therapeutic tool for the management of clinical male infertility for several reasons:

  1. The testis is an ideal organ for evaluation by FNA because of its uniform cellularity and easy accessibility.
  2. The trend toward minimally invasive procedures and cost-containment views FNA favorably compared to surgical testis biopsy.
  3. The realization that the specific histologic abnormality observed on testis biopsy has no definite correlation to either the etiology of infertility or to the ability to find sperm for assisted reproduction.
  4. Assisted reproduction has undergone dramatic advances such that testis sperm are routinely used for biological pregnancies, thus fueling the development of novel FNA techniques to both locate and procure sperm.
<span class="mw-page-title-main">Paul J. Turek</span>

Dr. Paul J Turek is an American physician and surgeon, men's reproductive health specialist, and businessman. Turek is a recent recipient of a National Institutes of Health (NIH) grant for research designed to help infertile men become fathers using stem cells.

<span class="mw-page-title-main">Orchiectomy</span> Surgical removal of one or both testicles

Orchiectomy is a surgical procedure in which one or both testicles are removed. The surgery can be performed for various reasons:

<span class="mw-page-title-main">Vasography</span>

Vasography is an X-ray study of the vas deferens to see if there is blockage, oftentimes in the context of male infertility. An incision is made in the scrotum, contrast is injected in the vas deferens, and X-rays are taken from different angles. Thus, it is an invasive procedure and carries risk of iatrogenic scarring and obstruction of the vas. Vasography has traditionally been considered the gold standard imaging modality for evaluating the seminal tract patency.

Ranjith Ramasamy is Director of the Reproductive Urology Fellowship program at the University of Miami's Miller School of Medicine.

References

  1. Graham, Sam D.; Keane, Thomas E. (2015-09-04). Glenn's urologic surgery. Keane, Thomas E.,, Graham, Sam D., Jr.,, Goldstein, Marc (8th ed.). Philadelphia, PA. ISBN   9781496320773. OCLC   927100060.{{cite book}}: CS1 maint: location missing publisher (link)
  2. 1 2 3 Dabaja, Ali A.; Schlegel, Peter N. (2013). "Microdissection testicular sperm extraction: an update". Asian Journal of Andrology. 15 (1): 35–39. doi:10.1038/aja.2012.141. ISSN   1745-7262. PMC   3739122 . PMID   23241638.
  3. 1 2 Flannigan, Ryan; Bach, Phil V.; Schlegel, Peter N. (2017). "Microdissection testicular sperm extraction". Translational Andrology and Urology. 6 (4): 745–752. doi: 10.21037/tau.2017.07.07 . ISSN   2223-4691. PMC   5583061 . PMID   28904907.
  4. Gies, Inge; Oates, Robert; De Schepper, Jean; Tournaye, Herman (2016). "Testicular biopsy and cryopreservation for fertility preservation of prepubertal boys with Klinefelter syndrome: a pro/con debate". Fertility and Sterility. 105 (2): 249–255. doi: 10.1016/j.fertnstert.2015.12.011 . ISSN   1556-5653. PMID   26748226.
  5. Westlander, Göran; Schmidt, Johanna; Westin, Cecilia (2019-07-19). "[Microdissection testicular sperm extraction (MD-TESE) - a new sperm recovery technique helping men with non-obstructive azoospermia]". Läkartidningen. 116: FL9I. ISSN   1652-7518. PMID   31334817.
  6. "Infertility - Treatment". nhs.uk. 2017-10-23. Retrieved 2019-09-24.
  7. Liu, Wen; Schulster, Michael L.; Alukal, Joseph P.; Najari, Bobby B. (2019-08-16). "Fertility Preservation in Male to Female Transgender Patients". Urologic Clinics of North America. 46 (4): 487–493. doi:10.1016/j.ucl.2019.07.003. ISSN   0094-0143. PMID   31582023. S2CID   201991902.
  8. 1 2 3 Esteves, Sandro C.; Miyaoka, Ricardo; Agarwal, Ashok (2011). "Sperm retrieval techniques for assisted reproduction". International Braz J Urol. 37 (5): 570–583. doi: 10.1590/s1677-55382011000500002 . ISSN   1677-6119. PMID   22099268.
  9. "Surgical sperm extraction | Human Fertilisation and Embryology Authority". www.hfea.gov.uk. Retrieved 2019-09-25.
  10. 1 2 3 Janosek-Albright, Kirsten J. C.; Schlegel, Peter N.; Dabaja, Ali A. (2015). "Testis sperm extraction". Asian Journal of Urology. 2 (2): 79–84. doi:10.1016/j.ajur.2015.04.018. ISSN   2214-3882. PMC   5730746 . PMID   29264124.
  11. "What is Sperm Retrieval? - Urology Care Foundation". www.urologyhealth.org. Retrieved 2019-09-24.
  12. 1 2 3 Tsujimura, Akira (2007). "Microdissection testicular sperm extraction: prediction, outcome, and complications". International Journal of Urology. 14 (10): 883–889. doi:10.1111/j.1442-2042.2007.01828.x. ISSN   0919-8172. PMID   17880285. S2CID   26300128.
  13. 1 2 Bernie, Aaron M.; Mata, Douglas A.; Ramasamy, Ranjith; Schlegel, Peter N. (2015). "Comparison of microdissection testicular sperm extraction, conventional testicular sperm extraction, and testicular sperm aspiration for nonobstructive azoospermia: a systematic review and meta-analysis". Fertility and Sterility. 104 (5): 1099–1103.e1–3. doi: 10.1016/j.fertnstert.2015.07.1136 . ISSN   1556-5653. PMID   26263080.
  14. Klami, Rauni; Mankonen, Harri; Perheentupa, Antti (2018). "Successful microdissection testicular sperm extraction for men with non-obstructive azoospermia". Reproductive Biology. 18 (2): 137–142. doi:10.1016/j.repbio.2018.03.003. ISSN   2300-732X. PMID   29602610. S2CID   4489364.
  15. Chiba, Koji; Enatsu, Noritoshi; Fujisawa, Masato (2016). "Management of non-obstructive azoospermia". Reproductive Medicine and Biology. 15 (3): 165–173. doi:10.1007/s12522-016-0234-z. ISSN   1445-5781. PMC   5715857 . PMID   29259433.
  16. "Surgical sperm extraction | Human Fertilisation and Embryology Authority". www.hfea.gov.uk. Retrieved 2019-09-24.
  17. "Microscopic Testicular Sperm Extraction + Fertility". Cleveland Clinic. Retrieved 2019-09-24.