Names | |
---|---|
IUPAC name tetranitrogen | |
Identifiers | |
| |
3D model (JSmol) |
|
ChemSpider |
|
PubChem CID | |
| |
| |
Properties | |
N4 | |
Molar mass | 56.0268 |
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa). |
Tetranitrogen is a neutrally charged polynitrogen allotrope of the chemical formula N
4 and consists of four nitrogen atoms. The tetranitrogen cation is the positively charged ion, N+
4, which is more stable than the neutral tetranitrogen molecule and is thus more studied.
Polynitrogen compounds have been well known and characterized by chemists for many years. The commonplace molecular (diatomic) nitrogen (N
2) was first isolated by Daniel Rutherford in 1772 [1] and the azide ion (N−
3) was discovered by Theodor Curtius in 1890. [2] Discoveries of other related nitrogenous allotypes during the twentieth century include the aromatic molecule pentazole and the radical molecule N•
3. However, none of these complexes could be isolated or synthesized on a macroscopic scale like N
2 and azide; it was not until 1999 that a large scale synthesis was devised for a third nitrogen allotrope, the pentazenium (N+
5) cation. [3] This increased interest in polynitrogen compounds in the late twentieth century was due to the advance of computational chemistry which predicted that these types of molecules could be used as potential high-energy-density matter (HEDM) sources. [4]
The N+
4 cation was first discovered in 1958 upon analysis of anomalous background peaks of molecular weight 56+ and 42+ in the mass spectra of molecular nitrogen, which corresponded with formation of N+
4 and N+
3, respectively. [5] Explicit synthesis of N+
4 was first carried out in 1984 by a similar mechanism of electron bombardment of N
2. [6] Theoretical chemistry predicted several possible synthesis mechanisms for N
4 including reaction of a neutral N atom with a N•
3 radical, binding of two N
2 molecules in the excited state, and extrusion from polycyclic compounds, none of which could be accomplished experimentally. However, in 2002 a method for synthesis of tetranitrogen was devised from the deionization of N+
4 through neutralization-reionization mass spectrometry (NRMS). [7] In the synthesis, N+
4 (which was first formed in the ionization chamber of the mass spectrometer) underwent two high energy collision events. During the first collision, N+
4 contacted a target gas, CH
4, to yield a small percentage of neutral N
4 molecules. [7]
A deflecting electrode was used to remove any unreacted N+
4 ions as well as the target gas, CH
4, and any additional unintended reaction products, leaving a stream of N
4 molecules. In order to affirm the synthesis and isolation of N
4, this stream then underwent a second collision event, contacting a second target gas, O
2, reforming the N+
4 cation. [7]
The disappearance and reemergence of this "recovery peak" confirms the completion of both reactions, providing ample evidence for the synthesis of N
4 by this method. Because the "flight time" between the two reactions, carried out in separate chambers of the mass spectrometer, was on the order of 1 μs, the N
4 molecule has a lifetime of at least this long. [7]
Since its discovery, N
4 has not been well studied. It is a gas at room temperature (298 K, 25 °C, 77 °F). It also has a lifetime in excess of 1 μs, though it is predicted to be characterized as metastable. [7] Due to its instability, the N4 molecule readily disassociates into two more-stable N2 molecules. This process is very exothermic, releasing around 800 kJ mol−1 of energy. [7]
Ab initio calculations in the neutral molecular suggest that previously proposed rectangular or tetrahedral structures, analogous to cyclobutadiene and tetrahedrane, respectively, are not likely to be the most thermodynamically stable. Instead, the ground state is expected to be a bent or zig-zag linear chain of the four nitrogen atoms containing two unpaired electrons on one of the terminal nitrogen atoms—essentially an azido-nitrene. [8]
The structure of N+
4 has been predicted by theoretical experiments and confirmed by experimental techniques involving collisionally activated dissociation mass spectrometry (CADMS). This technique bombards N+
4-producing fragments which can then be analyzed by tandem mass spectrometry. Based on the fragments observed, a structure was determined invlvolving two pairs of triple-bonded nitrogen atoms (two N
2 units) that are associated with each other with a longer, weaker bond.
Tetranitrogen and other similar polynitrogen compounds are predicted to be good candidates for use as high-energy-density matter (HEDM), high-energy fuel sources with small weight in comparison with traditional liquid- and fuel-cell-based energy sources. [9] [8] The N≡N triple bond of N
2 is much stronger (energy of formation of 229 kcal/mol) than either an equivalent one and a half N=N double bonds (100 kcal/mol, i.e. 150 kcal/mol total) or an equivalent three N−N single bonds (38.4 kcal/mol, i.e. 115 kcal/mol total). Because of this, polynitrogen molecules are expected to readily break down into harmless N
2 gas, in the process releasing large amounts of chemical energy. This is in contrast to carbon-containing compounds which have lower energies of formation for an equivalent number of single or double bonds than for a C≡C triple bond, allowing for the thermodynamically favorable formation of polymers. [9] It is for this reason that the only allotropic form of nitrogen found in nature is molecular nitrogen (N
2) and why novel strategies of synthesizing polynitrogen allotropes in a cost-efficient manner are so highly sought after.
Mass spectrometry (MS) is an analytical technique that is used to measure the mass-to-charge ratio of ions. The results are presented as a mass spectrum, a plot of intensity as a function of the mass-to-charge ratio. Mass spectrometry is used in many different fields and is applied to pure samples as well as complex mixtures.
An ion source is a device that creates atomic and molecular ions. Ion sources are used to form ions for mass spectrometers, optical emission spectrometers, particle accelerators, ion implanters and ion engines.
In chemistry, noble gas compounds are chemical compounds that include an element from the noble gases, group 18 of the periodic table. Although the noble gases are generally unreactive elements, many such compounds have been observed, particularly involving the element xenon.
Selected-ion flow-tube mass spectrometry (SIFT-MS) is a quantitative mass spectrometry technique for trace gas analysis which involves the chemical ionization of trace volatile compounds by selected positive precursor ions during a well-defined time period along a flow tube. Absolute concentrations of trace compounds present in air, breath or the headspace of bottled liquid samples can be calculated in real time from the ratio of the precursor and product ion signal ratios, without the need for sample preparation or calibration with standard mixtures. The detection limit of commercially available SIFT-MS instruments extends to the single digit pptv range.
Prismane or 'Ladenburg benzene' is a polycyclic hydrocarbon with the formula C6H6. It is an isomer of benzene, specifically a valence isomer. Prismane is far less stable than benzene. The carbon (and hydrogen) atoms of the prismane molecule are arranged in the shape of a six-atom triangular prism—this compound is the parent and simplest member of the prismanes class of molecules. Albert Ladenburg proposed this structure for the compound now known as benzene. The compound was not synthesized until 1973.
Atmospheric pressure chemical ionization (APCI) is an ionization method used in mass spectrometry which utilizes gas-phase ion-molecule reactions at atmospheric pressure (105 Pa), commonly coupled with high-performance liquid chromatography (HPLC). APCI is a soft ionization method similar to chemical ionization where primary ions are produced on a solvent spray. The main usage of APCI is for polar and relatively less polar thermally stable compounds with molecular weight less than 1500 Da. The application of APCI with HPLC has gained a large popularity in trace analysis detection such as steroids, pesticides and also in pharmacology for drug metabolites.
In mass spectrometry, direct analysis in real time (DART) is an ion source that produces electronically or vibronically excited-state species from gases such as helium, argon, or nitrogen that ionize atmospheric molecules or dopant molecules. The ions generated from atmospheric or dopant molecules undergo ion-molecule reactions with the sample molecules to produce analyte ions. Analytes with low ionization energy may be ionized directly. The DART ionization process can produce positive or negative ions depending on the potential applied to the exit electrode.
Mass spectral interpretation is the method employed to identify the chemical formula, characteristic fragment patterns and possible fragment ions from the mass spectra. Mass spectra is a plot of relative abundance against mass-to-charge ratio. It is commonly used for the identification of organic compounds from electron ionization mass spectrometry. Organic chemists obtain mass spectra of chemical compounds as part of structure elucidation and the analysis is part of many organic chemistry curricula.
Electron capture ionization is the ionization of a gas phase atom or molecule by attachment of an electron to create an ion of the form . The reaction is
In mass spectrometry, fragmentation is the dissociation of energetically unstable molecular ions formed from passing the molecules mass spectrum. These reactions are well documented over the decades and fragmentation patterns are useful to determine the molar weight and structural information of unknown molecules. Fragmentation that occurs in tandem mass spectrometry experiments has been a recent focus of research, because this data helps facilitate the identification of molecules.
Boron monofluoride or fluoroborylene is a chemical compound with the formula BF, one atom of boron and one of fluorine. It is an unstable gas, but it is a stable ligand on transition metals, in the same way as carbon monoxide. It is a subhalide, containing fewer than the normal number of fluorine atoms, compared with boron trifluoride. It can also be called a borylene, as it contains boron with two unshared electrons. BF is isoelectronic with carbon monoxide and dinitrogen; each molecule has 14 electrons.
Imidogen is an inorganic compound with the chemical formula NH. Like other simple radicals, it is highly reactive and consequently short-lived except as a dilute gas. Its behavior depends on its spin multiplicity.
Octaazacubane is a hypothetical explosive allotrope of nitrogen with formula N8, whose molecules have eight atoms arranged into a cube. (By comparison, nitrogen usually occurs as the diatomic molecule N2.) It can be regarded as a cubane-type cluster, where all eight corners are nitrogen atoms bonded along the edges. It is predicted to be a metastable molecule, in which despite the thermodynamic instability caused by bond strain, and the high energy of the N–N single bonds, the molecule remains kinetically stable for reasons of orbital symmetry.
Nitrogen pentafluoride is a theoretical compound of nitrogen and fluorine with the chemical formula NF5. It is hypothesized to exist based on the existence of the pentafluorides of the atoms below nitrogen in the periodic table, such as phosphorus pentafluoride. Theoretical models of the nitrogen pentafluoride molecule are either a trigonal bipyramidal covalently bound molecule with symmetry group D3h, or [NF4]+F−, which would be an ionic solid.
Helium is the smallest and the lightest noble gas and one of the most unreactive elements, so it was commonly considered that helium compounds cannot exist at all, or at least under normal conditions. Helium's first ionization energy of 24.57 eV is the highest of any element. Helium has a complete shell of electrons, and in this form the atom does not readily accept any extra electrons nor join with anything to make covalent compounds. The electron affinity is 0.080 eV, which is very close to zero. The helium atom is small with the radius of the outer electron shell at 0.29 Å. Helium is a very hard atom with a Pearson hardness of 12.3 eV. It has the lowest polarizability of any kind of atom, however, very weak van der Waals forces exist between helium and other atoms. This force may exceed repulsive forces, so at extremely low temperatures helium may form van der Waals molecules. Helium has the lowest boiling point of any known substance.
Phosphorus mononitride is an inorganic compound with the chemical formula PN. Containing only phosphorus and nitrogen, this material is classified as a binary nitride. From the Lewis structure perspective, it can be represented with a P-N triple bond with a lone pair on each atom. It is isoelectronic with N2, CO, P2, CS and SiO.
Argon compounds, the chemical compounds that contain the element argon, are rarely encountered due to the inertness of the argon atom. However, compounds of argon have been detected in inert gas matrix isolation, cold gases, and plasmas, and molecular ions containing argon have been made and also detected in space. One solid interstitial compound of argon, Ar1C60 is stable at room temperature. Ar1C60 was discovered by the CSIRO.
The magnesium argide ion, MgAr+ is an ion composed of one ionised magnesium atom, Mg+ and an argon atom. It is important in inductively coupled plasma mass spectrometry and in the study of the field around the magnesium ion. The ionization potential of magnesium is lower than the first excitation state of argon, so the positive charge in MgAr+ will reside on the magnesium atom. Neutral MgAr molecules can also exist in an excited state.
Superelectrophilic anions are a class of molecular ions that exhibit highly electrophilic reaction behavior despite their overall negative charge. Thus, they are even able to bind the unreactive noble gases or molecular nitrogen at room temperature. The only representatives known so far are the fragment ions of the type [B12X11]– derived from the closo-dodecaborate dianions [B12X12]2–. X represents a substituent connected to a boron atom (cf. Fig. 1). For this reason, the following article deals exclusively with superelectrophilic anions of this type.
Pnictogen-substituted tetrahedranes are pnictogen-containing analogues of tetrahedranes with the formula RxCxPn4-x. Computational work has indicated that the incorporation of pnictogens to the tetrahedral core alleviates the ring strain of tetrahedrane. Although theoretical work on pnictogen-substituted tetrahedranes has existed for decades, only the phosphorus-containing species have been synthesized. These species exhibit novel reactivities, most often through ring-opening and polymerization pathways. Phosphatetrahedranes are of interest as new retrons for organophosphorus chemistry. Their strain also make them of interest in the development of energy-dense compounds.