Thermal transmittance

Last updated

Thermal transmittance is the rate of transfer of heat through matter. The thermal transmittance of a material (such as insulation or concrete) or an assembly (such as a wall or window) is expressed as a U-value. The thermal insulance of a structure is the reciprocal of its thermal transmittance.

Contents

U-value

Although the concept of U-value (or U-factor) is universal, U-values can be expressed in different units. In most countries, U-value is expressed in SI units, as watts per square metre-kelvin:

W/(m2⋅K)

In the United States, U-value is expressed as British thermal units (Btu) per hour-square feet-degrees Fahrenheit:

Btu/(h⋅ft2⋅°F)

Within this article, U-values are expressed in SI unless otherwise noted. To convert from SI to US customary values, divide by 5.678. [1]

Well-insulated parts of a building have a low thermal transmittance whereas poorly insulated parts of a building have a high thermal transmittance. Losses due to thermal radiation, thermal convection and thermal conduction are taken into account in the U-value. Although it has the same units as heat transfer coefficient, thermal transmittance is different in that the heat transfer coefficient is used to solely describe heat transfer in fluids while thermal transmittance is used to simplify an equation that has several different forms of thermal resistances.

It is described by the equation:

Φ = A × U × (T1 - T2)

where Φ is the heat transfer in watts, U is the thermal transmittance, T1 is the temperature on one side of the structure, T2 is the temperature on the other side of the structure and A is the area in square metres.

Thermal transmittances of most walls and roofs can be calculated using ISO 6946, unless there is metal bridging the insulation in which case it can be calculated using ISO 10211. For most ground floors it can be calculated using ISO 13370. For most windows the thermal transmittance can be calculated using ISO 10077 or ISO 15099. ISO 9869 describes how to measure the thermal transmittance of a structure experimentally. Choice of materials and quality of installation has a critical impact on the window insulation results. The frame and double sealing of the window system are the actual weak points in the window insulation.

Typical thermal transmittance values for common building structures are as follows:[ citation needed ]

In practice the thermal transmittance is strongly affected by the quality of workmanship and if insulation is fitted poorly, the thermal transmittance can be considerably higher than if insulation is fitted well [3]

Calculating thermal transmittance

When calculating a thermal transmittance it is helpful to consider the building's construction in terms of its different layers. For instance a cavity wall might be described as in the following table:

ThicknessMaterialConductivity (λ)Insulance = thickness / conductivity
Outside surface0.04 K⋅m2/W
0.10 m (0.33 ft) Clay bricks0.77 W/(m⋅K)0.13 K⋅m2/W
0.05 m (0.16 ft) Glasswool 0.04 W/(m⋅K)1.25 K⋅m2/W
0.10 m (0.33 ft) Concrete blocks1.13 W/(m⋅K)0.09 K⋅m2/W
Inside surface0.13 K⋅m2/W

In this example the total insulance is 1.64 K⋅m2/W. The thermal transmittance of the structure is the reciprocal of the total thermal insulance. The thermal transmittance of this structure is therefore 0.61 W/(m2⋅K).

(Note that this example is simplified as it does not take into account any metal connectors, air gaps interrupting the insulation or mortar joints between the bricks and concrete blocks.)

It is possible to allow for mortar joints in calculating the thermal transmittance of a wall, as in the following table. Since the mortar joints allow heat to pass more easily than the light concrete blocks, the mortar is said to "bridge" the light concrete blocks.

ThicknessMaterialConductivity (λ)Insulance = thickness / conductivity
Outside surface0.04 K⋅m2/W
0.10 m (0.33 ft) Clay bricks0.77 W/(m⋅K)0.13 K⋅m2/W
0.05 m (0.16 ft) Glasswool 0.04 W/(m⋅K)1.25 K⋅m2/W
0.10 m (0.33 ft)Light concrete blocks0.30 W/(m⋅K)0.33 K⋅m2/W
(Bridge, 7%)Mortar between concrete blocks0.88 W/(m⋅K)0.11 K⋅m2/W
0.01 m (0.033 ft) Plaster 0.57 W/(m⋅K)0.02 K⋅m2/W
Inside surface0.13 K⋅m2/W

The average thermal insulance of the "bridged" layer depends upon the fraction of the area taken up by the mortar in comparison with the fraction of the area taken up by the light concrete blocks. To calculate thermal transmittance when there are "bridging" mortar joints it is necessary to calculate two quantities, known as Rmax and Rmin. Rmax can be thought of as the total thermal insulance obtained if it is assumed that there is no lateral flow of heat and Rmin can be thought of as the total thermal insulance obtained if it is assumed that there is no resistance to the lateral flow of heat. The U-value of the above construction is approximately equal to 2 / (Rmax + Rmin) Further information about how to deal with "bridging" is given in ISO 6946.

Measuring thermal transmittance

Schematic of ISO and ASTM compliant thermal transmittance measuring system. TRSYS01 thermal resistance measurement system schematic.png
Schematic of ISO and ASTM compliant thermal transmittance measuring system.

Whilst calculation of thermal transmittance can readily be carried out with the help of software which is compliant with ISO 6946, a thermal transmittance calculation does not fully take workmanship into account and it does not allow for adventitious circulation of air between, through and around sections of insulation. To take the effects of workmanship-related factors fully into account it is necessary to carry out a thermal transmittance measurement. [4]

Example of measurement system for thermal transmittance according to ISO 9869 and ASTM C1155, model TRSYS. TRSYS01 thermal resistance measurement system overview.jpg
Example of measurement system for thermal transmittance according to ISO 9869 and ASTM C1155, model TRSYS.

ISO 9869 describes how to measure the thermal transmittance of a roof or a wall by using heat flux sensor. These heat flux meters usually consist of thermopiles which provide an electrical signal which is in direct proportion to the heat flux. Typically they might be about 100 mm (3.9 in) in diameter and perhaps about 5 mm (0.20 in) thick and they need to be fixed firmly to the roof or wall which is under test in order to ensure good thermal contact. When the heat flux is monitored over a sufficiently long time, the thermal transmittance can be calculated by dividing the average heat flux by the average difference in temperature between the inside and outside of the building. For most wall and roof constructions the heat flux meter needs to monitor heat flows (and internal and external temperatures) continuously for a period of 72 hours to be conform the ISO 9869 standards.

Generally, thermal transmittance measurements are most accurate when:

When convection currents play a part in transmitting heat across a building component, then thermal transmittance increases as the temperature difference increases. For example, for an internal temperature of 20 °C (68 °F) and an external temperature of −20 °C (−4 °F), the optimum gap between panes in a double glazed window will be smaller than the optimum gap for an external temperature of 0 °C (32 °F).

The inherent thermal transmittance of materials can also vary with temperaturethe mechanisms involved are complex, and the transmittance may increase or decrease as the temperature increases. [5]

Related Research Articles

<span class="mw-page-title-main">Window</span> Opening to admit light or air

A window is an opening in a wall, door, roof, or vehicle that allows the exchange of light and may also allow the passage of sound and sometimes air. Modern windows are usually glazed or covered in some other transparent or translucent material, a sash set in a frame in the opening; the sash and frame are also referred to as a window. Many glazed windows may be opened, to allow ventilation, or closed, to exclude inclement weather. Windows may have a latch or similar mechanism to lock the window shut or to hold it open by various amounts.

<span class="mw-page-title-main">Passive solar building design</span> Architectural engineering that uses the Suns heat without electric or mechanical systems

In passive solar building design, windows, walls, and floors are made to collect, store, reflect, and distribute solar energy, in the form of heat in the winter and reject solar heat in the summer. This is called passive solar design because, unlike active solar heating systems, it does not involve the use of mechanical and electrical devices.

<span class="mw-page-title-main">Thermal insulation</span> Minimization of heat transfer

Thermal insulation is the reduction of heat transfer between objects in thermal contact or in range of radiative influence. Thermal insulation can be achieved with specially engineered methods or processes, as well as with suitable object shapes and materials.

<span class="mw-page-title-main">Thermal mass</span> Use of thermal energy storage in building design

In building design, thermal mass is a property of the mass of a building that enables it to store heat and provide inertia against temperature fluctuations. It is sometimes known as the thermal flywheel effect. The thermal mass of heavy structural elements can be designed to work alongside a construction's lighter thermal resistance components to create energy efficient buildings.

<span class="mw-page-title-main">R-value (insulation)</span> Measure of how well an object, per unit of area, resists conductive flow of heat

In the context of construction, the R-value is a measure of how well a two-dimensional barrier, such as a layer of insulation, a window or a complete wall or ceiling, resists the conductive flow of heat. R-value is the temperature difference per unit of heat flux needed to sustain one unit of heat flux between the warmer surface and colder surface of a barrier under steady-state conditions. The measure is therefore equally relevant for lowering energy bills for heating in the winter, for cooling in the summer, and for general comfort.

<span class="mw-page-title-main">Cordwood construction</span>

Cordwood construction is a term used for a natural building method in which short logs are piled crosswise to build a wall, using mortar or cob to permanently secure them. This technique can use local materials at minimal cost.

In thermodynamics, the heat transfer coefficient or film coefficient, or film effectiveness, is the proportionality constant between the heat flux and the thermodynamic driving force for the flow of heat. It is used in calculating the heat transfer, typically by convection or phase transition between a fluid and a solid. The heat transfer coefficient has SI units in watts per square meter per kelvin (W/m2/K).

<span class="mw-page-title-main">Heating degree day</span> Sum of temperature values

Heating degree day (HDD) is a measurement designed to quantify the demand for energy needed to heat a building. HDD is derived from measurements of outside air temperature. The heating requirements for a given building at a specific location are considered to be directly proportional to the number of HDD at that location.

<span class="mw-page-title-main">Superinsulation</span> Method of insulating a building

Superinsulation is an approach to building design, construction, and retrofitting that dramatically reduces heat loss by using much higher insulation levels and airtightness than average. Superinsulation is one of the ancestors of the passive house approach.

<span class="mw-page-title-main">Building insulation</span> Material to reduce heat transfer in structures

Building insulation is material used in a building to reduce the flow of thermal energy. While the majority of insulation in buildings is for thermal purposes, the term also applies to acoustic insulation, fire insulation, and impact insulation. Often an insulation material will be chosen for its ability to perform several of these functions at once.

<span class="mw-page-title-main">Solar gain</span> Solar energy effect

Solar gain is the increase in thermal energy of a space, object or structure as it absorbs incident solar radiation. The amount of solar gain a space experiences is a function of the total incident solar irradiance and of the ability of any intervening material to transmit or resist the radiation.

Sol-air temperature (Tsol-air) is a variable used to calculate cooling load of a building and determine the total heat gain through exterior surfaces. It is an improvement over:

<span class="mw-page-title-main">Thermal bridge</span>

A thermal bridge, also called a cold bridge, heat bridge, or thermal bypass, is an area or component of an object which has higher thermal conductivity than the surrounding materials, creating a path of least resistance for heat transfer. Thermal bridges result in an overall reduction in thermal resistance of the object. The term is frequently discussed in the context of a building's thermal envelope where thermal bridges result in heat transfer into or out of conditioned space.

<span class="mw-page-title-main">Pipe insulation</span>

Pipe Insulation is thermal or acoustic insulation used on pipework.

Window insulation film is a plastic film which can be applied to glass windows to reduce heat transfer. There are two types in common use designed to reduce heat flow via radiation and convection respectively.

Window insulation reduces heat transfer from one side of a window to the other. The U-value is used to refer to the amount of heat that can pass through a window, called thermal transmittance, with a lower score being better. The U-factor of a window can often be found on the rating label of the window.

<span class="mw-page-title-main">Radiator reflector</span>

A radiator reflector is a thin sheet or foil applied to the wall behind, and closely spaced from, a domestic heating radiator. The intention is to reduce heat losses into the wall by reflecting radiant heat away from the wall. It is a form of radiant barrier and is intended to reduce energy losses and hence decrease fuel expenditure.

<span class="mw-page-title-main">Insulated glazing</span> Construction element consisting of at least two glass plates

Insulating glass (IG) consists of two or more glass window panes separated by a space to reduce heat transfer across a part of the building envelope. A window with insulating glass is commonly known as double glazing or a double-paned window, triple glazing or a triple-paned window, or quadruple glazing or a quadruple-paned window, depending upon how many panes of glass are used in its construction.

Dynamic insulation is a form of insulation where cool outside air flowing through the thermal insulation in the envelope of a building will pick up heat from the insulation fibres. Buildings can be designed to exploit this to reduce the transmission heat loss (U-value) and to provide pre-warmed, draft free air to interior spaces. This is known as dynamic insulation since the U-value is no longer constant for a given wall or roof construction but varies with the speed of the air flowing through the insulation. Dynamic insulation is different from breathing walls. The positive aspects of dynamic insulation need to be weighed against the more conventional approach to building design which is to create an airtight envelope and provide appropriate ventilation using either natural ventilation or mechanical ventilation with heat recovery. The air-tight approach to building envelope design, unlike dynamic insulation, results in a building envelope that provides a consistent performance in terms of heat loss and risk of interstitial condensation that is independent of wind speed and direction. Under certain wind conditions a dynamically insulated building can have a higher heat transmission loss than an air-tight building with the same thickness of insulation. Often the air enters at about 15 °C.

<span class="mw-page-title-main">Quadruple glazing</span>

Quadruple glazing is a type of insulated glazing comprising four glass panes, commonly equipped with low emissivity coating and insulating gases in the cavities between the glass panes. Quadruple glazing is a subset of multipane (multilayer) glazing systems. Multipane glazing with up to six panes is commercially available.

References

  1. Holladay, Martin. "Metric and Imperial". Green Building Advisor. Retrieved 25 March 2019.
  2. Passivhaus Institute's thermal testing results for Rehau Geneo 'PHZ' triple glazed window
  3. Field investigations of the thermal performance (U-values) of construction elements as built
  4. "greenTEG Application Note Building Physics" (PDF).
  5. Thermal conductivity of some common materials and gases