Thioester-containing protein 1 | |||||||
---|---|---|---|---|---|---|---|
Identifiers | |||||||
Organism | |||||||
Symbol | TEP1 | ||||||
Entrez | 2828233 | ||||||
RefSeq (Prot) | NP_523578.1 | ||||||
UniProt | B5AZK7 | ||||||
|
Thioester containing protein 1, often called TEP1 is a key component of the arthropod innate immune system. TEP1 was first identified as a key immunity gene in 2001 through functional studies on Anopheles gambiae mosquitoes. [1]
TEP1 is an antimicrobial protein which acts in a system reminiscent of the human complement pathway, which damages the cell membranes of pathogens. Studies have shown that TEP1 is structurally and functionally homologous to the human complement protein C3. [2] TEP1 is now known to be important in the resistance of Anopheles mosquitoes to Plasmodium infection, targeting the malaria parasite during its invasion into the mosquitoes body cavity. Following this discovery insect thioester containing proteins have come under increased scrutiny from the scientific community as possible targets for disease control.
TEP1 is coded for by two different alleles TEP1-S and TEP-R which are specific to susceptible and resistant mosquito populations respectively. [3]
Several crystallography studies have been used to determine the structure of TEP1. TEP1 contains a highly reactive thioester motif, which can undergo spontaneous hydrolysis. [4] The thioester group is functionally essential for TEP1 to covalently bind to the surface of invading pathogens. [4] Tep1 is a multimeric protein, meaning it is formed of multiple associated polypeptide chains. TEP1 is composed of a series of 6 macroglobulin domains, a β sheet CUB domain and an essential thioester domain, which protects the thioester motif from premature activation and hydrolysis by shielding it in the core of the molecule. [5]
Comparisons of the TEP1-S and TEP1-R gene products show that the two allelic variants encode structural differences which are particularly prevalent in the thioester domain. These differences alter both the stability of the thioester bond and the ability of TEP1 to interact with other factors in the hemolymph of the mosquito. [3] [6]
The structure of TEP1 and its vertebrate homologue - complement protein C3- is mostly conserved. However, there are some differences between the two molecules, for example unlike C3, TEP1 lacks an anaphylatoxin domain. The absence of this domain means that the exposed thioester bond of active TEP1 is unstable. [2] [4]
The TEP1 protein is glycosylated and secreted into the body cavity by mosquito immune cells as a 165 kDa zymogen - this inactivated form is known as TEP1-F. Upon parasite infection TEP1-F is cleaved. A protease processes the full length molecule into two fragments which remain closely associated: a ~75 kDa N-terminal and an ~85 kDa C-terminal fragment which contains the thioester bond. [7] The cleaved protein is known as TEP1-cut and represents the activated form. This mechanism is equivalent to the maturation of vertebrate pro-C3 to active C3 which occurs in the endoplasmic reticulum. [3]
Recent work has suggested the two forms of TEP1, the full TEP1-F and TEP1-cut, have separate roles. [2]
TEP1 is a central component in the mosquito's immune response against invading parasites such as Plasmodium. Similar to the complement protein C3 in function, TEP1 acts as an opsonin which facilitates extensive parasite killing. [8] TEP1 covalently binds to the surface of invading pathogens, promoting phagocytosis, lysis and melanisation. [8] Through this activity TEP1 is considered an important determinant of Anopheles vector capacity. [9] TEP1 is an antimicrobial peptide which associates with APL1C/LRIM1 heterodimers to act as a pattern recognition receptor (PRR) which identifies and responds to specific patterns on pathogen cell surfaces. [2]
Studies have shown TEP1 to be a key molecule in limiting parasite numbers in mosquitoes. RNA interference (RNAi) experiments have illustrated the importance of TEP1 in clearing malaria infections in mosquitoes. RNAi knockdown of TEP1 using dsRNA resulted in a five-fold increase of Plasmodium oocysts in TEP1-S silenced mosquitoes. Knock down of TEP1-R stops parasite melanisation. [1]
TEP1-F is secreted into the hemolymph where it is processed by a currently unknown protease into its active form – the two chained molecule TEP1-Cut. Cleavage into the cut form is followed by a change in protein structure which exposes the thioester bond. This conformational change enables TEP1 to react and covalently bind to molecules on the surface of invading pathogens. [7]
The expression of TEP1 and other genes involved in the mosquito's anti-parasitic response is a highly regulated process. The base level of TEP1 expression is regulated by insect Toll and IMD pathways. These immune pathways limit the expression of TEP1 coding genes through NF-kB/ REL transcription factors. [10] TEP1 interacts with a heterodimeric protein complex made up of two leucine-rich repeat (LRR) domain containing proteins: leucine-rich immune molecule 1 (LRIM1) and AnophelesPlasmodium-responsive leucine-rich repeat protein 1 (APL1C). The LRR molecules have two main roles: firstly acting as control proteins which prevent the inactivation of TEP1 through hydrolysis of the thioester bond or binding to self -tissues and secondly mediate the binding of TEP1 to pathogen surfaces. [11]
The LRIM1/APL1C heterodimer has three domains, combining the elements of a N-terminal LRR region, a pattern of cysteine residues and a C-terminal coiled-coil domain. These features determine how the complex interacts with TEP1. [11]
The complement system was previously thought to be an exclusive feature of the immune defense of vertebrates until complement-like molecules were cloned in non-vertebrate species such as the horseshoe crab and mosquitoes. [1] The discovery of C3 like molecules in a diverse range of species suggests that the complement pathway in particular the alternative complement pathway is evolutionary ancient. [7] The TEP1 cascade most closely resembles the alternative pathway as insects do not possess adaptive immunity. [11] Therefore, unlike the classical complement pathway the TEP1 pathway is antibody independent and instead relies on the presence of factors permanently present at low levels in the hemolymph. Furthermore, both the TEP1 pathway and the alternative pathway utilise convertase mediated amplification loops to increase pathogen opsonisation.
Thioester containing protein (TEPs) appeared early in animal evolution: members of this family have been identified in diverse organisms as nematodes, insects, molluscs, fish, birds and mammals. TEP1 in Anopheles gambiae is one of the best studied of these molecules. [12] Despite close structural and functional similarities, phylogenic analysis has shown that TEP1 and other arthropod thioester proteins actually form a separate clade from vertebrate complement factors. [4] This data suggests that their complement-like activity is a likely example of parallel evolution. Further research is needed into this area. [2]
The characterization of TEP1 and other similar insect immune factors in insects represent new opportunities to prevent the transmission of insect vector borne diseases. Research is currently focusing on vector/parasite interactions, specifically those between Plasmodium and Anopheles mosquitoes, in order to discover novel, improved malaria prevention methods. [13] TEP1 is being explored as a possible target for genetic manipulation. A significant aim of this research is to create mosquito populations resistant to Plasmodium parasites therefore reducing the spread of malaria. [14]
Malaria is a mosquito-borne infectious disease that affects vertebrates and Anopheles mosquitoes. Human malaria causes symptoms that typically include fever, fatigue, vomiting, and headaches. In severe cases, it can cause jaundice, seizures, coma, or death. Symptoms usually begin 10 to 15 days after being bitten by an infected Anopheles mosquito. If not properly treated, people may have recurrences of the disease months later. In those who have recently survived an infection, reinfection usually causes milder symptoms. This partial resistance disappears over months to years if the person has no continuing exposure to malaria. The mosquito vector is itself harmed by Plasmodium infections, causing reduced lifespan.
Plasmodium is a genus of unicellular eukaryotes that are obligate parasites of vertebrates and insects. The life cycles of Plasmodium species involve development in a blood-feeding insect host which then injects parasites into a vertebrate host during a blood meal. Parasites grow within a vertebrate body tissue before entering the bloodstream to infect red blood cells. The ensuing destruction of host red blood cells can result in malaria. During this infection, some parasites are picked up by a blood-feeding insect, continuing the life cycle.
Anopheles is a genus of mosquito first described by the German entomologist J. W. Meigen in 1818, and are known as nail mosquitoes and marsh mosquitoes. Many such mosquitoes are vectors of the parasite Plasmodium, a genus of protozoans that cause malaria in birds, reptiles, and mammals, including humans. The Anopheles gambiae mosquito is the best-known species of marsh mosquito that transmits the Plasmodium falciparum, which is a malarial parasite deadly to human beings; no other mosquito genus is a vector of human malaria.
Plasmodium falciparum is a unicellular protozoan parasite of humans, and the deadliest species of Plasmodium that causes malaria in humans. The parasite is transmitted through the bite of a female Anopheles mosquito and causes the disease's most dangerous form, falciparum malaria. P. falciparum is therefore regarded as the deadliest parasite in humans. It is also associated with the development of blood cancer and is classified as a Group 2A (probable) carcinogen.
The classical complement pathway is one of three pathways which activate the complement system, which is part of the immune system. The classical complement pathway is initiated by antigen-antibody complexes with the antibody isotypes IgG and IgM.
The adaptive immune system, AIS, also known as the acquired immune system, or specific immune system is a subsystem of the immune system that is composed of specialized cells, organs, and processes that eliminate pathogens specifically. The acquired immune system is one of the two main immunity strategies found in vertebrates.
DSCAM and Dscam are both abbreviations for Down syndrome cell adhesion molecule. In humans, DSCAM refers to a gene that encodes one of several protein isoforms.
Plasmodium vivax is a protozoal parasite and a human pathogen. This parasite is the most frequent and widely distributed cause of recurring malaria. Although it is less virulent than Plasmodium falciparum, the deadliest of the five human malaria parasites, P. vivax malaria infections can lead to severe disease and death, often due to splenomegaly. P. vivax is carried by the female Anopheles mosquito; the males do not bite.
A mosquito net is a type of meshed curtain that is circumferentially draped over a bed or a sleeping area to offer the sleeper barrier protection against bites and stings from mosquitos, flies, and other pest insects, and thus against the diseases they may carry. Examples of such preventable insect-borne diseases include malaria, dengue fever, yellow fever, zika virus, Chagas disease, and various forms of encephalitis, including the West Nile virus.
Plasmodium knowlesi is a parasite that causes malaria in humans and other primates. It is found throughout Southeast Asia, and is the most common cause of human malaria in Malaysia. Like other Plasmodium species, P. knowlesi has a life cycle that requires infection of both a mosquito and a warm-blooded host. While the natural warm-blooded hosts of P. knowlesi are likely various Old World monkeys, humans can be infected by P. knowlesi if they are fed upon by infected mosquitoes. P. knowlesi is a eukaryote in the phylum Apicomplexa, genus Plasmodium, and subgenus Plasmodium. It is most closely related to the human parasite Plasmodium vivax as well as other Plasmodium species that infect non-human primates.
Fotis Constantine Kafatos was a Greek biologist. Between 2007-2010 he was the founding president of the European Research Council (ERC). He chaired the ERC Scientific Council from 2006-2010. Thereafter, he was appointed Honorary President of the ERC.
Plasmodium berghei is a single-celled parasite causing rodent malaria. It is in the Plasmodium subgenus Vinckeia.
The Anopheles gambiae complex consists of at least seven morphologically indistinguishable species of mosquitoes in the genus Anopheles. The complex was recognised in the 1960s and includes the most important vectors of malaria in sub-Saharan Africa, particularly of the most dangerous malaria parasite, Plasmodium falciparum. It is one of the most efficient malaria vectors known. The An. gambiae mosquito additionally transmits Wuchereria bancrofti which causes lymphatic filariasis, a symptom of which is elephantiasis.
Paratransgenesis is a technique that attempts to eliminate a pathogen from vector populations through transgenesis of a symbiont of the vector. The goal of this technique is to control vector-borne diseases. The first step is to identify proteins that prevent the vector species from transmitting the pathogen. The genes coding for these proteins are then introduced into the symbiont, so that they can be expressed in the vector. The final step in the strategy is to introduce these transgenic symbionts into vector populations in the wild. One use of this technique is to prevent mortality for humans from insect-borne diseases. Preventive methods and current controls against vector-borne diseases depend on insecticides, even though some mosquito breeds may be resistant to them. There are other ways to fully eliminate them. “Paratransgenesis focuses on utilizing genetically modified insect symbionts to express molecules within the vector that are deleterious to pathogens they transmit.” The acidic bacteria Asaia symbionts are beneficial in the normal development of mosquito larvae; however, it is unknown what Asais symbionts do to adult mosquitoes.
Plasmodium yoelii is a parasite of the genus Plasmodium subgenus Vinckeia. As in all Plasmodium species, P. yoelii has both vertebrate and insect hosts. The vertebrate hosts for this parasite are mammals.
Avian malaria is a parasitic disease of birds, caused by parasite species belonging to the genera Plasmodium and Hemoproteus. The disease is transmitted by a dipteran vector including mosquitoes in the case of Plasmodium parasites and biting midges for Hemoproteus. The range of symptoms and effects of the parasite on its bird hosts is very wide, from asymptomatic cases to drastic population declines due to the disease, as is the case of the Hawaiian honeycreepers. The diversity of parasites is large, as it is estimated that there are approximately as many parasites as there are species of hosts. As research on human malaria parasites became difficult, Dr. Ross studied avian malaria parasites. Co-speciation and host switching events have contributed to the broad range of hosts that these parasites can infect, causing avian malaria to be a widespread global disease, found everywhere except Antarctica.
Mosquito-borne diseases or mosquito-borne illnesses are diseases caused by bacteria, viruses or parasites transmitted by mosquitoes. Nearly 700 million people contract mosquito-borne illnesses each year, resulting in more than a million deaths.
Anopheles stephensi is a primary mosquito vector of malaria in urban India and is included in the same subgenus as Anopheles gambiae, the primary malaria vector in Africa. A. gambiae consists of a complex of morphologically identical species of mosquitoes, along with all other major malaria vectors; however, A. stephensi has not yet been included in any of these complexes. Nevertheless, two races of A. stephensi exist based on differences in egg dimensions and the number of ridges on the eggs; A. s. stephensisensu stricto, the type form, is a competent malaria vector that is found in urban areas, and A. s. mysorensis, the variety form, exists in rural areas and exhibits considerable zoophilic behaviour, making it a poor malaria vector. However, A. s. mysorensis is a detrimental vector in Iran. An intermediate form also exists in rural communities and peri-urban areas, though its vector status is unknown. About 12% of malaria cases in India are due to A. stephensi.
Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) is a family of proteins present on the membrane surface of red blood cells that are infected by the malarial parasite Plasmodium falciparum. PfEMP1 is synthesized during the parasite's blood stage inside the RBC, during which the clinical symptoms of falciparum malaria are manifested. Acting as both an antigen and adhesion protein, it is thought to play a key role in the high level of virulence associated with P. falciparum. It was discovered in 1984 when it was reported that infected RBCs had unusually large-sized cell membrane proteins, and these proteins had antibody-binding (antigenic) properties. An elusive protein, its chemical structure and molecular properties were revealed only after a decade, in 1995. It is now established that there is not one but a large family of PfEMP1 proteins, genetically regulated (encoded) by a group of about 60 genes called var. Each P. falciparum is able to switch on and off specific var genes to produce a functionally different protein, thereby evading the host's immune system. RBCs carrying PfEMP1 on their surface stick to endothelial cells, which facilitates further binding with uninfected RBCs, ultimately helping the parasite to both spread to other RBCs as well as bringing about the fatal symptoms of P. falciparum malaria.
Flaminia Catteruccia is an Italian professor of immunology and infectious disease at the Harvard T.H. Chan School of Public Health, studying the interactions between malaria and the Anopheles mosquitoes that transmit the parasites.