Three-wave equation

Last updated

In nonlinear systems, the three-wave equations, sometimes called the three-wave resonant interaction equations or triad resonances, describe small-amplitude waves in a variety of non-linear media, including electrical circuits and non-linear optics. They are a set of completely integrable nonlinear partial differential equations. Because they provide the simplest, most direct example of a resonant interaction, have broad applicability in the sciences, and are completely integrable, they have been intensively studied since the 1970s. [1]

Contents

Informal introduction

The three-wave equation arises by consideration of some of the simplest imaginable non-linear systems. Linear differential systems have the generic form

for some differential operator D. The simplest non-linear extension of this is to write

How can one solve this? Several approaches are available. In a few exceptional cases, there might be known exact solutions to equations of this form. In general, these are found in some ad hoc fashion after applying some ansatz. A second approach is to assume that and use perturbation theory to find "corrections" to the linearized theory. A third approach is to apply techniques from scattering matrix (S-matrix) theory.

In the S-matrix approach, one considers particles or plane waves coming in from infinity, interacting, and then moving out to infinity. Counting from zero, the zero-particle case corresponds to the vacuum, consisting entirely of the background. The one-particle case is a wave that comes in from the distant past and then disappears into thin air; this can happen when the background is absorbing, deadening or dissipative. Alternately, a wave appears out of thin air and moves away. This occurs when the background is unstable and generates waves: one says that the system "radiates". The two-particle case consists of a particle coming in, and then going out. This is appropriate when the background is non-uniform: for example, an acoustic plane wave comes in, scatters from an enemy submarine, and then moves out to infinity; by careful analysis of the outgoing wave, characteristics of the spatial inhomogeneity can be deduced. There are two more possibilities: pair creation and pair annihilation. In this case, a pair of waves is created "out of thin air" (by interacting with some background), or disappear into thin air.

Next on this count is the three-particle interaction. It is unique, in that it does not require any interacting background or vacuum, nor is it "boring" in the sense of a non-interacting plane-wave in a homogeneous background. Writing for these three waves moving from/to infinity, this simplest quadratic interaction takes the form of

and cyclic permutations thereof. This generic form can be called the three-wave equation; a specific form is presented below. A key point is that all quadratic resonant interactions can be written in this form (given appropriate assumptions). For time-varying systems where can be interpreted as energy, one may write

for a time-dependent version.

Review

Formally, the three-wave equation is

where cyclic, is the group velocity for the wave having as the wave-vector and angular frequency, and the gradient, taken in flat Euclidean space in n dimensions. The are the interaction coefficients; by rescaling the wave, they can be taken . By cyclic permutation, there are four classes of solutions. Writing one has . The are all equivalent under permuation. In 1+1 dimensions, there are three distinct solutions: the solutions, termed explosive; the cases, termed stimulated backscatter , and the case, termed soliton exchange . These correspond to very distinct physical processes. [2] [3] One interesting solution is termed the simulton, it consists of three comoving solitons, moving at a velocity v that differs from any of the three group velocities . This solution has a possible relationship to the "three sisters" observed in rogue waves, even though deep water does not have a three-wave resonant interaction.

The lecture notes by Harvey Segur provide an introduction. [4]

The equations have a Lax pair, and are thus completely integrable. [1] [5] The Lax pair is a 3x3 matrix pair, to which the inverse scattering method can be applied, using techniques by Fokas. [6] [7] The class of spatially uniform solutions are known, these are given by Weierstrass elliptic ℘-function. [8] The resonant interaction relations are in this case called the Manley–Rowe relations; the invariants that they describe are easily related to the modular invariants and [9] That these appear is perhaps not entirely surprising, as there is a simple intuitive argument. Subtracting one wave-vector from the other two, one is left with two vectors that generate a period lattice. All possible relative positions of two vectors are given by Klein's j-invariant, thus one should expect solutions to be characterized by this.

A variety of exact solutions for various boundary conditions are known. [10] A "nearly general solution" to the full non-linear PDE for the three-wave equation has recently been given. It is expressed in terms of five functions that can be freely chosen, and a Laurent series for the sixth parameter. [8] [9]

Applications

Some selected applications of the three-wave equations include:

These cases are all naturally described by the three-wave equation.

Related Research Articles

Schrödinger equation Linear partial differential equation whose solution describes the quantum-mechanical system.

The Schrödinger equation is a linear partial differential equation that describes the wave function or state function of a quantum-mechanical system. It is a key result in quantum mechanics, and its discovery was a significant landmark in the development of the subject. The equation is named after Erwin Schrödinger, who postulated the equation in 1925, and published it in 1926, forming the basis for the work that resulted in his Nobel Prize in Physics in 1933.

Gravity wave Wave in or at the interface between fluids where gravity is the main equilibrium force

In fluid dynamics, gravity waves are waves generated in a fluid medium or at the interface between two media when the force of gravity or buoyancy tries to restore equilibrium. An example of such an interface is that between the atmosphere and the ocean, which gives rise to wind waves.

The Klein–Gordon equation is a relativistic wave equation, related to the Schrödinger equation. It is second-order in space and time and manifestly Lorentz-covariant. It is a quantized version of the relativistic energy–momentum relation. Its solutions include a quantum scalar or pseudoscalar field, a field whose quanta are spinless particles. Its theoretical relevance is similar to that of the Dirac equation. Electromagnetic interactions can be incorporated, forming the topic of scalar electrodynamics, but because common spinless particles like the pions are unstable and also experience the strong interaction the practical utility is limited.

Korteweg–de Vries equation Mathematical model of waves on a shallow water surface

In mathematics, the Korteweg–de Vries (KdV) equation is a mathematical model of waves on shallow water surfaces. It is particularly notable as the prototypical example of an exactly solvable model, that is, a non-linear partial differential equation whose solutions can be exactly and precisely specified. KdV can be solved by means of the inverse scattering transform. The mathematical theory behind the KdV equation is a topic of active research. The KdV equation was first introduced by Boussinesq and rediscovered by Diederik Korteweg and Gustav de Vries (1895).

Greens identities Vector calculus formulas relating the bulk with the boundary of a region

In mathematics, Green's identities are a set of three identities in vector calculus relating the bulk with the boundary of a region on which differential operators act. They are named after the mathematician George Green, who discovered Green's theorem.

Nonlinear Schrödinger equation nonlinear variation of the Schrödinger equation

In theoretical physics, the (one-dimensional) nonlinear Schrödinger equation (NLSE) is a nonlinear variation of the Schrödinger equation. It is a classical field equation whose principal applications are to the propagation of light in nonlinear optical fibers and planar waveguides and to Bose–Einstein condensates confined to highly anisotropic cigar-shaped traps, in the mean-field regime. Additionally, the equation appears in the studies of small-amplitude gravity waves on the surface of deep inviscid (zero-viscosity) water; the Langmuir waves in hot plasmas; the propagation of plane-diffracted wave beams in the focusing regions of the ionosphere; the propagation of Davydov's alpha-helix solitons, which are responsible for energy transport along molecular chains; and many others. More generally, the NLSE appears as one of universal equations that describe the evolution of slowly varying packets of quasi-monochromatic waves in weakly nonlinear media that have dispersion. Unlike the linear Schrödinger equation, the NLSE never describes the time evolution of a quantum state. The 1D NLSE is an example of an integrable model.

Rayleigh–Taylor instability Unstable behavior of two contacting fluids of different densities

The Rayleigh–Taylor instability, or RT instability, is an instability of an interface between two fluids of different densities which occurs when the lighter fluid is pushing the heavier fluid. Examples include the behavior of water suspended above oil in the gravity of Earth, mushroom clouds like those from volcanic eruptions and atmospheric nuclear explosions, supernova explosions in which expanding core gas is accelerated into denser shell gas, instabilities in plasma fusion reactors and inertial confinement fusion.

The Schrödinger–Newton equation, sometimes referred to as the Newton–Schrödinger or Schrödinger–Poisson equation, is a nonlinear modification of the Schrödinger equation with a Newtonian gravitational potential, where the gravitational potential emerges from the treatment of the wave function as a mass density, including a term that represents interaction of a particle with its own gravitational field. The inclusion of a self-interaction term represents a fundamental alteration of quantum mechanics. It can be written either as a single integro-differential equation or as a coupled system of a Schrödinger and a Poisson equation. In the latter case it is also referred to in the plural form.

In theoretical physics, Nordström's theory of gravitation was a predecessor of general relativity. Strictly speaking, there were actually two distinct theories proposed by the Finnish theoretical physicist Gunnar Nordström, in 1912 and 1913 respectively. The first was quickly dismissed, but the second became the first known example of a metric theory of gravitation, in which the effects of gravitation are treated entirely in terms of the geometry of a curved spacetime.

The Thirring model is an exactly solvable quantum field theory which describes the self-interactions of a Dirac field in (1+1) dimensions.

In mathematics, the inverse scattering transform is a method for solving some non-linear partial differential equations. It is one of the most important developments in mathematical physics in the past 40 years. The method is a non-linear analogue, and in some sense generalization, of the Fourier transform, which itself is applied to solve many linear partial differential equations. The name "inverse scattering method" comes from the key idea of recovering the time evolution of a potential from the time evolution of its scattering data: inverse scattering refers to the problem of recovering a potential from its scattering matrix, as opposed to the direct scattering problem of finding the scattering matrix from the potential.

In numerical analysis, the split-step (Fourier) method is a pseudo-spectral numerical method used to solve nonlinear partial differential equations like the nonlinear Schrödinger equation. The name arises for two reasons. First, the method relies on computing the solution in small steps, and treating the linear and the nonlinear steps separately. Second, it is necessary to Fourier transform back and forth because the linear step is made in the frequency domain while the nonlinear step is made in the time domain.

The Gross–Pitaevskii equation describes the ground state of a quantum system of identical bosons using the Hartree–Fock approximation and the pseudopotential interaction model.

Stokes wave A nonlinear and periodic surface wave on an inviscid fluid layer of constant mean depth

In fluid dynamics, a Stokes wave is a nonlinear and periodic surface wave on an inviscid fluid layer of constant mean depth. This type of modelling has its origins in the mid 19th century when Sir George Stokes – using a perturbation series approach, now known as the Stokes expansion – obtained approximate solutions for nonlinear wave motion.

In mathematics, a Coulomb wave function is a solution of the Coulomb wave equation, named after Charles-Augustin de Coulomb. They are used to describe the behavior of charged particles in a Coulomb potential and can be written in terms of confluent hypergeometric functions or Whittaker functions of imaginary argument.

Cnoidal wave A nonlinear and exact periodic wave solution of the Korteweg–de Vries equation

In fluid dynamics, a cnoidal wave is a nonlinear and exact periodic wave solution of the Korteweg–de Vries equation. These solutions are in terms of the Jacobi elliptic function cn, which is why they are coined cnoidal waves. They are used to describe surface gravity waves of fairly long wavelength, as compared to the water depth.

Peregrine soliton An analytic solution of the nonlinear Schrödinger equation

The Peregrine soliton is an analytic solution of the nonlinear Schrödinger equation. This solution was proposed in 1983 by Howell Peregrine, researcher at the mathematics department of the University of Bristol.

The Belinski–Zakharov (inverse) transform is a nonlinear transformation that generates new exact solutions of the vacuum Einstein's field equation. It was developed by Vladimir Belinski and Vladimir Zakharov in 1978. The Belinski–Zakharov transform is a generalization of the inverse scattering transform. The solutions produced by this transform are called gravitational solitons (gravisolitons). Despite the term 'soliton' being used to describe gravitational solitons, their behavior is very different from other (classical) solitons. In particular, gravitational solitons do not preserve their amplitude and shape in time, and up to June 2012 their general interpretation remains unknown. What is known however, is that most black holes are special cases of gravitational solitons.

Two-body Dirac equations Quantum field theory equations

In quantum field theory, and in the significant subfields of quantum electrodynamics (QED) and quantum chromodynamics (QCD), the two-body Dirac equations (TBDE) of constraint dynamics provide a three-dimensional yet manifestly covariant reformulation of the Bethe–Salpeter equation for two spin-1/2 particles. Such a reformulation is necessary since without it, as shown by Nakanishi, the Bethe–Salpeter equation possesses negative-norm solutions arising from the presence of an essentially relativistic degree of freedom, the relative time. These "ghost" states have spoiled the naive interpretation of the Bethe–Salpeter equation as a quantum mechanical wave equation. The two-body Dirac equations of constraint dynamics rectify this flaw. The forms of these equations can not only be derived from quantum field theory they can also be derived purely in the context of Dirac's constraint dynamics and relativistic mechanics and quantum mechanics. Their structures, unlike the more familiar two-body Dirac equation of Breit, which is a single equation, are that of two simultaneous quantum relativistic wave equations. A single two-body Dirac equation similar to the Breit equation can be derived from the TBDE. Unlike the Breit equation, it is manifestly covariant and free from the types of singularities that prevent a strictly nonperturbative treatment of the Breit equation.

In nonlinear systems, a resonant interaction is the interaction of three or more waves, usually but not always of small amplitude. Resonant interactions occur when a simple set of criteria coupling wave-vectors and the dispersion equation are met. The simplicty of the criteria make technique popular in multiple fields. Its most prominent and well-developed forms appear in the study of gravity waves, but also finds numerous applications from astrophysics and biology to engineering and medicine. Theoretical work on partial differential equations provides insights into chaos theory; there are curious links to number theory. Resonant interactions allow waves to (elastically) scatter, diffuse or to become unstable. Diffusion processes are responsible for the eventual thermalization of most nonlinear systems; instabilities offer insight into high-dimensional chaos and turbulence.

References

  1. 1 2 Zakharov, V. E.; Manakov, S. V. (1975). "On the theory of resonant interaction of wave packets in nonlinear media" (PDF). Soviet Physics JETP . 42 (5): 842–850.
  2. Degasperis, A.; Conforti, M.; Baronio, F.; Wabnitz, S.; Lombardo, S. (2011). "The Three-Wave Resonant Interaction Equations: Spectral and Numerical Methods" (PDF). Letters in Mathematical Physics . 96 (1–3): 367–403. Bibcode:2011LMaPh..96..367D. doi:10.1007/s11005-010-0430-4. S2CID   18846092.
  3. Kaup, D. J.; Reiman, A.; Bers, A. (1979). "Space-time evolution of nonlinear three-wave interactions. I. Interaction in a homogeneous medium". Reviews of Modern Physics . 51 (2): 275–309. Bibcode:1979RvMP...51..275K. doi:10.1103/RevModPhys.51.275.
  4. 1 2 Segur, H.; Grisouard, N. (2009). "Lecture 13: Triad (or 3-wave) resonances" (PDF). Geophysical Fluid Dynamics. Woods Hole Oceanographic Institution.
  5. Zakharov, V. E.; Manakov, S. V.; Novikov, S. P.; Pitaevskii, L. I. (1984). Theory of Solitons: The Inverse Scattering Method. New York: Plenum Press. Bibcode:1984lcb..book.....N.
  6. Fokas, A. S.; Ablowitz, M. J. (1984). "On the inverse scattering transform of multidimensional nonlinear equations related to first‐order systems in the plane". Journal of Mathematical Physics . 25 (8): 2494–2505. Bibcode:1984JMP....25.2494F. doi:10.1063/1.526471.
  7. Lenells, J. (2012). "Initial-boundary value problems for integrable evolution equations with 3×3 Lax pairs". Physica D . 241 (8): 857–875. arXiv: 1108.2875 . Bibcode:2012PhyD..241..857L. doi:10.1016/j.physd.2012.01.010. S2CID   119144977.
  8. 1 2 Martin, R. A. (2015). Toward a General Solution of the Three-Wave Resonant Interaction Equations (Thesis). University of Colorado.
  9. 1 2 Martin, R. A.; Segur, H. (2016). "Toward a General Solution of the Three-Wave Partial Differential Equations". Studies in Applied Mathematics . 137: 70–92. doi: 10.1111/sapm.12133 .
  10. Kaup, D. J. (1980). "A Method for Solving the Separable Initial-Value Problem of the Full Three-Dimensional Three-Wave Interaction". Studies in Applied Mathematics . 62: 75–83. doi:10.1002/sapm198062175.
  11. Kadri, U. (2015). "Triad Resonance in the Gravity–Acousic Family". AGU Fall Meeting Abstracts. 2015: OS11A–2006. Bibcode:2015AGUFMOS11A2006K. doi: 10.13140/RG.2.1.4283.1441 .
  12. Kim, J.-H.; Terry, P. W. (2011). "A self-consistent three-wave coupling model with complex linear frequencies". Physics of Plasmas . 18 (9): 092308. Bibcode:2011PhPl...18i2308K. doi:10.1063/1.3640807.