Trace monoid

Last updated

In computer science, a trace is an equivalence class of strings, wherein certain letters in the string are allowed to commute, but others are not. Traces generalize the concept of strings by relaxing the requirement for all the letters to have a definite order, instead allowing for indefinite orderings in which certain reshufflings could take place. In an opposite way, traces generalize the concept of sets with multiplicities by allowing for specifying some incomplete ordering of the letters rather than requiring complete equivalence under all reorderings. The trace monoid or free partially commutative monoid is a monoid of traces.

Contents

Traces were introduced by Pierre Cartier and Dominique Foata in 1969 to give a combinatorial proof of MacMahon's master theorem. Traces are used in theories of concurrent computation, where commuting letters stand for portions of a job that can execute independently of one another, while non-commuting letters stand for locks, synchronization points or thread joins. [1]

The trace monoid is constructed from the free monoid (the set of all strings of finite length) as follows. First, sets of commuting letters are given by an independency relation. These induce an equivalence relation of equivalent strings; the elements of the equivalence classes are the traces. The equivalence relation then partitions the elements of the free monoid into a set of equivalence classes; the result is still a monoid; it is a quotient monoid now called the trace monoid. The trace monoid is universal, in that all dependency-homomorphic (see below) monoids are in fact isomorphic.

Trace monoids are commonly used to model concurrent computation, forming the foundation for process calculi. They are the object of study in trace theory. The utility of trace monoids comes from the fact that they are isomorphic to the monoid of dependency graphs; thus allowing algebraic techniques to be applied to graphs, and vice versa. They are also isomorphic to history monoids, which model the history of computation of individual processes in the context of all scheduled processes on one or more computers.

Trace

Let denote the free monoid, that is, the set of all strings written in the alphabet . Here, the asterisk denotes, as usual, the Kleene star. An independency relation on then induces a (symmetric) binary relation on , where if and only if there exist , and a pair such that and . Here, and are understood to be strings (elements of ), while and are letters (elements of ).

The trace is defined as the reflexive transitive closure of . The trace is thus an equivalence relation on , and is denoted by , where is the dependency relation corresponding to that is and conversely Clearly, different dependencies will give different equivalence relations.

The transitive closure implies that if and only if there exists a sequence of strings such that and and for all . The trace is stable under the monoid operation on (concatenation) and is therefore a congruence relation on .

The trace monoid, commonly denoted as , is defined as the quotient monoid

The homomorphism

is commonly referred to as the natural homomorphism or canonical homomorphism. That the terms natural or canonical are deserved follows from the fact that this morphism embodies a universal property, as discussed in a later section.

One will also find the trace monoid denoted as where is the independency relation. Confusingly, one can also find the commutation relation used instead of the independency relation (it differs by including all the diagonal elements).

Examples

Consider the alphabet . A possible dependency relation is

The corresponding independency is

Therefore, the letters commute. Thus, for example, a trace equivalence class for the string would be

The equivalence class is an element of the trace monoid.

Properties

The cancellation property states that equivalence is maintained under right cancellation. That is, if , then . Here, the notation denotes right cancellation, the removal of the first occurrence of the letter a from the string w, starting from the right-hand side. Equivalence is also maintained by left-cancellation. Several corollaries follow:

A strong form of Levi's lemma holds for traces. Specifically, if for strings u, v, x, y, then there exist strings and such that for all letters and such that occurs in and occurs in , and

[2]

Universal property

A dependency morphism (with respect to a dependency D) is a morphism

to some monoid M, such that the "usual" trace properties hold, namely:

1. implies that
2. implies that
3. implies that
4. and imply that

Dependency morphisms are universal, in the sense that for a given, fixed dependency D, if is a dependency morphism to a monoid M, then M is isomorphic to the trace monoid . In particular, the natural homomorphism is a dependency morphism.

Normal forms

There are two well-known normal forms for words in trace monoids. One is the lexicographic normal form, due to Anatolij V. Anisimov and Donald Knuth, and the other is the Foata normal form due to Pierre Cartier and Dominique Foata who studied the trace monoid for its combinatorics in the 1960s. [3]

Unicode's Normalization Form Canonical Decomposition (NFD) is an example of a lexicographic normal form - the ordering is to sort consecutive characters with non-zero canonical combining class by that class.

Trace languages

Just as a formal language can be regarded as a subset of , the set of all possible strings, so a trace language is defined as a subset of all possible traces.

Alternatively, but equivalently, a language is a trace language, or is said to be consistent with dependency D if

where

is the trace closure of a set of strings.

See also

Notes

  1. Sándor & Crstici (2004) p.161
  2. Proposition 2.2, Diekert and Métivier 1997.
  3. Section 2.3, Diekert and Métivier 1997.

Related Research Articles

<span class="mw-page-title-main">Original proof of Gödel's completeness theorem</span>

The proof of Gödel's completeness theorem given by Kurt Gödel in his doctoral dissertation of 1929 is not easy to read today; it uses concepts and formalisms that are no longer used and terminology that is often obscure. The version given below attempts to represent all the steps in the proof and all the important ideas faithfully, while restating the proof in the modern language of mathematical logic. This outline should not be considered a rigorous proof of the theorem.

<span class="mw-page-title-main">Monoid</span> Algebraic structure with an associative operation and an identity element

In abstract algebra, a branch of mathematics, a monoid is a set equipped with an associative binary operation and an identity element. For example, the nonnegative integers with addition form a monoid, the identity element being 0.

<span class="mw-page-title-main">Pauli matrices</span> Matrices important in quantum mechanics and the study of spin

In mathematical physics and mathematics, the Pauli matrices are a set of three 2 × 2 complex matrices that are traceless, Hermitian, involutory and unitary. Usually indicated by the Greek letter sigma, they are occasionally denoted by tau when used in connection with isospin symmetries.

<span class="mw-page-title-main">Uncertainty principle</span> Foundational principle in quantum physics

The uncertainty principle, also known as Heisenberg's indeterminacy principle, is a fundamental concept in quantum mechanics. It states that there is a limit to the precision with which certain pairs of physical properties, such as position and momentum, can be simultaneously known. In other words, the more accurately one property is measured, the less accurately the other property can be known.

In particle physics, the Dirac equation is a relativistic wave equation derived by British physicist Paul Dirac in 1928. In its free form, or including electromagnetic interactions, it describes all spin-1/2 massive particles, called "Dirac particles", such as electrons and quarks for which parity is a symmetry. It is consistent with both the principles of quantum mechanics and the theory of special relativity, and was the first theory to account fully for special relativity in the context of quantum mechanics. It was validated by accounting for the fine structure of the hydrogen spectrum in a completely rigorous way. It has become vital in the building of the Standard Model.

In mathematics, the idea of a free object is one of the basic concepts of abstract algebra. Informally, a free object over a set A can be thought of as being a "generic" algebraic structure over A: the only equations that hold between elements of the free object are those that follow from the defining axioms of the algebraic structure. Examples include free groups, tensor algebras, or free lattices.

Independence-friendly logic is an extension of classical first-order logic (FOL) by means of slashed quantifiers of the form and , where is a finite set of variables. The intended reading of is "there is a which is functionally independent from the variables in ". IF logic allows one to express more general patterns of dependence between variables than those which are implicit in first-order logic. This greater level of generality leads to an actual increase in expressive power; the set of IF sentences can characterize the same classes of structures as existential second-order logic.

In set theory, -induction, also called epsilon-induction or set-induction, is a principle that can be used to prove that all sets satisfy a given property. Considered as an axiomatic principle, it is called the axiom schema of set induction.

In mathematics, the Fubini–Study metric is a Kähler metric on a complex projective space CPn endowed with a Hermitian form. This metric was originally described in 1904 and 1905 by Guido Fubini and Eduard Study.

In mathematical physics, the gamma matrices, also called the Dirac matrices, are a set of conventional matrices with specific anticommutation relations that ensure they generate a matrix representation of the Clifford algebra It is also possible to define higher-dimensional gamma matrices. When interpreted as the matrices of the action of a set of orthogonal basis vectors for contravariant vectors in Minkowski space, the column vectors on which the matrices act become a space of spinors, on which the Clifford algebra of spacetime acts. This in turn makes it possible to represent infinitesimal spatial rotations and Lorentz boosts. Spinors facilitate spacetime computations in general, and in particular are fundamental to the Dirac equation for relativistic spin particles. Gamma matrices were introduced by Paul Dirac in 1928.

In quantum mechanics, notably in quantum information theory, fidelity quantifies the "closeness" between two density matrices. It expresses the probability that one state will pass a test to identify as the other. It is not a metric on the space of density matrices, but it can be used to define the Bures metric on this space.

In computer science, in particular in concurrency theory, a dependency relation is a binary relation on a finite domain , symmetric, and reflexive; i.e. a finite tolerance relation. That is, it is a finite set of ordered pairs , such that

In mathematics and computer science, a history monoid is a way of representing the histories of concurrently running computer processes as a collection of strings, each string representing the individual history of a process. The history monoid provides a set of synchronization primitives for providing rendezvous points between a set of independently executing processes or threads.

In set theory and mathematical logic, the Lévy hierarchy, introduced by Azriel Lévy in 1965, is a hierarchy of formulas in the formal language of the Zermelo–Fraenkel set theory, which is typically called just the language of set theory. This is analogous to the arithmetical hierarchy, which provides a similar classification for sentences of the language of arithmetic.

<span class="mw-page-title-main">Stokes' theorem</span> Theorem in vector calculus

Stokes' theorem, also known as the Kelvin–Stokes theorem after Lord Kelvin and George Stokes, the fundamental theorem for curls or simply the curl theorem, is a theorem in vector calculus on . Given a vector field, the theorem relates the integral of the curl of the vector field over some surface, to the line integral of the vector field around the boundary of the surface. The classical theorem of Stokes can be stated in one sentence:

ACE is the collection of units, implementing both a public key encryption scheme and a digital signature scheme. Corresponding names for these schemes — «ACE Encrypt» and «ACE Sign». Schemes are based on Cramer-Shoup public key encryption scheme and Cramer-Shoup signature scheme. Introduced variants of these schemes are intended to achieve a good balance between performance and security of the whole encryption system.

<span class="mw-page-title-main">Symmetry in quantum mechanics</span> Properties underlying modern physics

Symmetries in quantum mechanics describe features of spacetime and particles which are unchanged under some transformation, in the context of quantum mechanics, relativistic quantum mechanics and quantum field theory, and with applications in the mathematical formulation of the standard model and condensed matter physics. In general, symmetry in physics, invariance, and conservation laws, are fundamentally important constraints for formulating physical theories and models. In practice, they are powerful methods for solving problems and predicting what can happen. While conservation laws do not always give the answer to the problem directly, they form the correct constraints and the first steps to solving a multitude of problems. In application, understanding symmetries can also provide insights on the eigenstates that can be expected. For example, the existence of degenerate states can be inferred by the presence of non commuting symmetry operators or that the non degenerate states are also eigenvectors of symmetry operators.

In mathematical physics, the Gordon decomposition of the Dirac current is a splitting of the charge or particle-number current into a part that arises from the motion of the center of mass of the particles and a part that arises from gradients of the spin density. It makes explicit use of the Dirac equation and so it applies only to "on-shell" solutions of the Dirac equation.

In string theory, the Ramond–Neveu–Schwarz (RNS) formalism is an approach to formulating superstrings in which the worldsheet has explicit superconformal invariance but spacetime supersymmetry is hidden, in contrast to the Green–Schwarz formalism where the latter is explicit. It was originally developed by Pierre Ramond, André Neveu and John Schwarz in the RNS model in 1971, which gives rise to type II string theories and can also give type I string theory. Heterotic string theories can also be acquired through this formalism by using a different worldsheet action. There are various ways to quantize the string within this framework including light-cone quantization, old canonical quantization, and BRST quantization. A consistent string theory is only acquired if the spectrum of states is restricted through a procedure known as a GSO projection, with this projection being automatically present in the Green–Schwarz formalism.

In first-order arithmetic, the induction principles, bounding principles, and least number principles are three related families of first-order principles, which may or may not hold in nonstandard models of arithmetic. These principles are often used in reverse mathematics to calibrate the axiomatic strength of theorems.

References

General references

Seminal publications