Trichodinidae

Last updated

Trichodinidae
Trich2.jpg
Scanning electron micrograph of Trichodina on the gills of a mullet
Scientific classification
(unranked):
SAR
(unranked):
Phylum:
Subphylum:
Class:
Subclass:
Order:
Family:
Trichodinidae

Claus, 1951

Trichodinidae is a family of ciliates of the order Mobilida, class Oligohymenophorea. Members of the family are ectoparasites (or, alternatively, ectocommensals) of a wide variety of aquatic organisms, including fish, amphibians, hydrozoans, molluscs and crustaceans. [1] [2] [3] [4]

Genera

The family consists of four genera.

Related Research Articles

<span class="mw-page-title-main">Hypotrich</span> Subclass of single-celled organisms


The hypotrichs are a group of ciliated protozoa, common in fresh water, salt water, soil and moss. Hypotrichs possess compound ciliary organelles called "cirri," which are made up of thick tufts of cilia, sparsely distributed on the ventral surface of the cell. The multiple fused cilia which form a cirrus function together as a unit, enabling the organism to crawl along solid substrates such as submerged debris or sediments. Hypotrichs typically possess a large oral aperture, bordered on one side by a wreath or collar of membranelles, forming an "adoral zone of membranelles," or AZM.

<span class="mw-page-title-main">Parasitic disease</span> Medical condition

A parasitic disease, also known as parasitosis, is an infectious disease caused by parasites. Parasites are organisms which derive sustenance from its host while causing it harm. The study of parasites and parasitic diseases is known as parasitology. Medical parasitology is concerned with three major groups of parasites: parasitic protozoa, helminths, and parasitic arthropods. Parasitic diseases are thus considered those diseases that are caused by pathogens belonging taxonomically to either the animal kingdom, or the protozoan kingdom.

<i>Stylonychia</i> Genus of single-celled organisms

Stylonychia is a genus of ciliates, in the subclass Hypotrichia. Species of Stylonychia are very common in fresh water and soil, and may be found on filamentous algae, surface films, and among particles of sediment. Like other Hypotrichs, Stylonychia has cilia grouped into membranelles alongside the mouth and cirri over the body. It is distinguished partly by long cirri at the posterior, usually a cluster of three. The largest can just be seen at a 25x magnification, and the smallest can just be seen at a 450x magnification.

<span class="mw-page-title-main">Oligotrich</span> Subclass of single-celled organisms

The oligotrichs are a group of ciliates, included among the spirotrichs. They have prominent oral cilia, which are arranged as a collar and lapel, in contrast to the choreotrichs where they form a complete circle. The body cilia are reduced to a girdle and ventral cilia. In Halteria and its relatives, they form bristles or cirri; however these forms may be closer relatives of the stichotrichs than of other oligotrichs. These organisms are very common in plankton communities, especially in marine systems. Usually found in concentrations of about 1 per ml, they are the most important herbivores in the sea, the first link in the food chain.

<i>Stentor</i> (ciliate) Genus of single-celled organisms

Stentor, sometimes called trumpet animalcules, are a genus of filter-feeding, heterotrophic ciliates, representative of the heterotrichs. They are usually horn-shaped, and reach lengths of two millimeters; as such, they are among the largest known extant unicellular organisms. They reproduce asexually through binary fission.

<i>Vorticella</i> Genus of single-celled organisms

Vorticella is a genus of bell-shaped ciliates that have stalks to attach themselves to substrates. The stalks have contractile myonemes, allowing them to pull the cell body against substrates. The formation of the stalk happens after the free-swimming stage.

<span class="mw-page-title-main">Protozoa</span> Single-celled eukaryotic organisms that feed on organic matter

Protozoa are a polyphyletic group of single-celled eukaryotes, either free-living or parasitic, that feed on organic matter such as other microorganisms or organic debris. Historically, protozoans were regarded as "one-celled animals".

Karyorelictea is a class of ciliates in the subphylum Postciliodesmatophora. Most species are members of the microbenthos community, that is, microscopic organisms found in the marine interstitial habitat, though one genus, Loxodes, is found in freshwater.

<span class="mw-page-title-main">Myzozoa</span> Group of single-celled organisms

Myzozoa is a grouping of specific phyla within Alveolata, that either feed through myzocytosis, or were ancestrally capable of feeding through myzocytosis.

<span class="mw-page-title-main">Ciliate</span> Taxon of protozoans with hair-like organelles called cilia

The ciliates are a group of alveolates characterized by the presence of hair-like organelles called cilia, which are identical in structure to eukaryotic flagella, but are in general shorter and present in much larger numbers, with a different undulating pattern than flagella. Cilia occur in all members of the group and are variously used in swimming, crawling, attachment, feeding, and sensation.

<span class="mw-page-title-main">Mobilida</span> Order of protists belonging to the ciliates phylum

Mobilida is a group of parasitic or symbiotic peritrich ciliates, comprising more than 280 species. Mobilids live on or within a wide variety of aquatic organisms, including fish, amphibians, molluscs, cnidarians, flatworms and other ciliates, attaching to their host organism by means of an aboral adhesive disk. Some mobilid species are pathogens of wild or farmed fish, causing severe and economically damaging diseases such as trichodinosis.

Paramecium sonneborni is a species of unicellular organisms belonging to the genus Paramecium of the phylum Ciliophora. It was first isolated in Texas and named after Tracy M. Sonneborn. It is a member of the Paramecium aurelia species complex. They are covered in cilia and are distinguished by their difference in mating patterns and enzyme patterns. The length of Paramecium sonneborni is between 130 and 186 μm with a mean length of 154μm. It is the newest member of the Paramecium aurelia species complex. The current Paramecium sonneborni strains, so far, reveal very low viability in the generations and are a result of allopatric speciation.

<i>Colpidium colpoda</i> Species of protozoan

Colpidium colpoda are free-living ciliates commonly found in many freshwater environments including streams, rivers, lakes and ponds across the world. Colpidium colpoda is also frequently found inhabiting wastewater treatment plants. This species is used as an indicator of water quality and waste treatment plant performance.

Protoheterotrichida is an order of karyorelict ciliates. It contains the family Geleiidae.

Geleiidae is a family of karyorelict ciliates. It is sometimes synonymized with family Aveliidae.

<span class="mw-page-title-main">Armophorea</span> Class of single-celled organisms

Armophorea is a class of ciliates in the subphylum Intramacronucleata. . It was first resolved in 2004 and comprises three orders: Metopida, Clevelandellida, and Armophorida. Previously members of this class were thought to be heterotrichs because of similarities in morphology, most notably a characteristic dense arrangement of cilia surrounding their oral structures. However, the development of genetic tools and subsequent incorporation of DNA sequence information has led to major revisions in the evolutionary relationships of many protists, including ciliates. Metopids, clevelandellids, and armophorids were grouped into this class based on similarities in their small subunit rRNA sequences, making them one of two so-called "riboclasses" of ciliates, however, recent analyses suggest that Armophorida may not be related to the other two orders.

Scuticociliatia is a subclass of ciliates in the class Oligohymenophorea. Its members are called scuticociliates. These unicellular eukaryotes are microorganisms that are usually free-living and can be found in freshwater, marine, and soil habitats. Around 20 members of the group have been identified as causative agents of the disease scuticociliatosis, in which the ciliates are parasites of other marine organisms. Species known to be susceptible include a broad range of teleosts, seahorses, sharks, and some crustaceans.

<i>Licnophora</i> Genus of single-celled organisms

Licnophora is a genus of ciliates in the family Licnophoridae. They typically have an hourglass-like shape and live as ectocommensals on marine animals.

<i>Tracheloraphis</i> Genus of single-celled organisms

Tracheloraphis is a genus of ciliates in the family Trachelocercidae.

<i>Halteria</i> Genus of single-celled organisms

Halteria, sometimes referred to as the jumping oligotrich, is a genus of common planktonic ciliates that are found in many freshwater environments. Halteria are easy to locate due to their abundance and distinctive behaviour with observations of Halteria potentially dating back to the 17th century and the discovery of microorganisms. Over time more has been established about their morphology and behavior, which has led to many changes in terms of classification.

References

  1. van As, J.G.; Basson, Linda (1986). "A new species of Trichodina (Ciliophora: Peritricha) from a limnocnidid medusa in the Zambezi system". South African Journal of Zoology. 21 (1): 76–78. doi: 10.1080/02541858.1986.11447961 .
  2. Xu, Kuidong; Song, Weibo (2008-01-01). "Two trichodinid ectoparasites from marine molluscs in the Yellow Sea, off China, with the description of Trichodina caecellae n. sp. (Protozoa: Ciliophora: Peritrichia)". Systematic Parasitology. 69 (1): 1–11. doi:10.1007/s11230-007-9094-6. ISSN   0165-5752. PMID   18030597.
  3. Diller, William F. (1928-12-01). "Binary fission and endomixis in the Trichodina from tadpoles (Protozoa, Ciliata)". Journal of Morphology. 46 (2): 521–561. doi:10.1002/jmor.1050460206. ISSN   1097-4687.
  4. Green, John D.; Shiel, Russell J. (2000). "Mobiline peritrich riders on Australian calanoid copepods". Hydrobiologia. 437 (1–3): 203–212. doi: 10.1023/A:1026567210125 . ISSN   0018-8158.