Triphenyl phosphite

Last updated
Triphenyl phosphite
P(OPh)3.png
Triphenyl-phosphite-from-xtal-3D-bs-17.png
Names
Preferred IUPAC name
Triphenyl phosphite
Identifiers
3D model (JSmol)
ChemSpider
ECHA InfoCard 100.002.645 OOjs UI icon edit-ltr-progressive.svg
PubChem CID
UNII
  • InChI=1S/C18H15O3P/c1-4-10-16(11-5-1)19-22(20-17-12-6-2-7-13-17)21-18-14-8-3-9-15-18/h1-15H Yes check.svgY
    Key: HVLLSGMXQDNUAL-UHFFFAOYSA-N Yes check.svgY
  • InChI=1/C18H15O3P/c1-4-10-16(11-5-1)19-22(20-17-12-6-2-7-13-17)21-18-14-8-3-9-15-18/h1-15H
    Key: HVLLSGMXQDNUAL-UHFFFAOYAF
  • O(P(Oc1ccccc1)Oc2ccccc2)c3ccccc3
Properties
C18H15O3P
Molar mass 310.28 g/mol
Appearancecolourless liquid
Density 1.184 g/mL
Melting point 22 to 24 °C (72 to 75 °F; 295 to 297 K)
Boiling point 360 °C (680 °F; 633 K)
low
Solubility organic solvents
-183.7·10−6 cm3/mol
Hazards
Occupational safety and health (OHS/OSH):
Main hazards
flammable
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
X mark.svgN  verify  (what is  Yes check.svgYX mark.svgN ?)

Triphenyl phosphite is the organophosphorus compound with the formula P(OC6H5)3. It is a colourless viscous liquid.

Contents

Preparation

Triphenylphosphite is prepared from phosphorus trichloride and phenol in the presence of a catalytic amount of base:

PCl3 + 3 HOC6H5 → P(OC6H5)3 + 3 HCl

Reactions

Triphenylphosphite is a precursor to trimethylphosphine, it serves as a source of P3+ that is less electrophilic than phosphorus trichloride: [1]

(C6H5O)3P + 3 CH3MgBr → P(CH3)3 + 3 "MgBrOC6H5"

Triphenylphosphite is quaternized by methyl iodide: [2]

(C6H5O)3P + CH3I → [CH3(C6H5O)3P]+I

Coordination complexes

Triphenylphosphite is a common ligand in coordination chemistry. It forms zero-valent complexes of the type M[P(OC6H5)3]4 (M = Ni, Pd, Pt). The nickel complex can be prepared by displacement of the diene from bis(cyclooctadiene)nickel: [3]

Ni(COD)2 + 4 P(OC6H5)3 → Ni[P(OC6H5)3]4 + 2 COD

Related complexes are homogeneous catalysts for the hydrocyanation of alkenes. It also forms a variety of Fe(0) and Fe(II) complexes such as the dihydride H2Fe[P(OC6H5)3]4. [4]

Polyamorphism

Triphenylphosphite is a notable example of polyamorphism in organic compounds, namely it exists in two different amorphous forms at temperatures about 200 K. [5] One polymorphic modification of triphenyl phosphite was obtained by means of crystallization in ionic liquids. [6]

Related Research Articles

<span class="mw-page-title-main">Phosphonium</span> Family of polyatomic cations containing phosphorus

In chemistry, the term phosphonium describes polyatomic cations with the chemical formula PR+
4
. These cations have tetrahedral structures. The salts are generally colorless or take the color of the anions.

<span class="mw-page-title-main">Phosphorus trichloride</span> Chemical compound

Phosphorus trichloride is an inorganic compound with the chemical formula PCl3. A colorless liquid when pure, it is an important industrial chemical, being used for the manufacture of phosphites and other organophosphorus compounds. It is toxic and reacts readily with water to release hydrogen chloride.

<span class="mw-page-title-main">Triphenylphosphine</span> Chemical compound

Triphenylphosphine (IUPAC name: triphenylphosphane) is a common organophosphorus compound with the formula P(C6H5)3 and often abbreviated to PPh3 or Ph3P. It is versatile compound that is widely used as a reagent in organic synthesis and as a ligand for transition metal complexes, including ones that serve as catalysts in organometallic chemistry. PPh3 exists as relatively air stable, colorless crystals at room temperature. It dissolves in non-polar organic solvents such as benzene and diethyl ether.

Phosphorus trifluoride (formula PF3), is a colorless and odorless gas. It is highly toxic and reacts slowly with water. Its main use is as a ligand in metal complexes. As a ligand, it parallels carbon monoxide in metal carbonyls, and indeed its toxicity is due to its binding with the iron in blood hemoglobin in a similar way to carbon monoxide.

<span class="mw-page-title-main">Phosphorous acid</span> Chemical compound (H3PO3)

Phosphorous acid is the compound described by the formula H3PO3. This acid is diprotic, not triprotic as might be suggested by this formula. Phosphorous acid is an intermediate in the preparation of other phosphorus compounds. Organic derivatives of phosphorous acid, compounds with the formula RPO3H2, are called phosphonic acids.

<span class="mw-page-title-main">Phosphite ester</span> Organic compound with the formula P(OR)3

In organic chemistry, a phosphite ester or organophosphite usually refers to an organophosphorous compound with the formula P(OR)3. They can be considered as esters of an unobserved tautomer phosphorous acid, H3PO3, with the simplest example being trimethylphosphite, P(OCH3)3. Some phosphites can be considered esters of the dominant tautomer of phosphorous acid (HP(O)(OH)2). The simplest representative is dimethylphosphite with the formula HP(O)(OCH3)2. Both classes of phosphites are usually colorless liquids.

Cycloocta-1,5-diene is a cyclic hydrocarbon with the chemical formula C8H12, specifically [−(CH2)2−CH=CH−]2.

<span class="mw-page-title-main">Trimethylphosphine</span> Chemical compound

Trimethylphosphine is an organophosphorus compound with the formula P(CH3)3, commonly abbreviated as PMe3. This colorless liquid has a strongly unpleasant odor, characteristic of alkylphosphines. The compound is a common ligand in coordination chemistry.

Organophosphines are organophosphorus compounds with the formula PRnH3−n, where R is an organic substituent. These compounds can be classified according to the value of n: primary phosphines (n = 1), secondary phosphines (n = 2), tertiary phosphines (n = 3). All adopt pyramidal structures. Organophosphines are generally colorless, lipophilic liquids or solids. The parent of the organophosphines is phosphine (PH3).

<span class="mw-page-title-main">Thiophosphoryl chloride</span> Chemical compound

Thiophosphoryl chloride is an inorganic compound with the chemical formula PSCl3. It is a colorless pungent smelling liquid that fumes in air. It is synthesized from phosphorus chloride and used to thiophosphorylate organic compounds, such as to produce insecticides.

<span class="mw-page-title-main">Trimethylolpropane phosphite</span> Chemical compound

Trimethylolpropane phosphite, C2H5C(CH2O)3P, is a phosphite ester used as a ligand in organometallic chemistry. Trimethylolpropane phosphite is sometimes abbreviated to EtCage. It is a white solid that is soluble in organic solvents. It is also highly toxic.

<span class="mw-page-title-main">Triethyl phosphite</span> Chemical compound

Triethyl phosphite is an organophosphorus compound, specifically a phosphite ester, with the formula P(OCH2CH3)3, often abbreviated P(OEt)3. It is a colorless, malodorous liquid. It is used as a ligand in organometallic chemistry and as a reagent in organic synthesis.

<span class="mw-page-title-main">Trimethyl phosphite</span> Chemical compound

Trimethyl phosphite is an organophosphorus compound with the formula P(OCH3)3, often abbreviated P(OMe)3. It is a colorless liquid with a highly pungent odor. It is the simplest phosphite ester and finds used as a ligand in organometallic chemistry and as a reagent in organic synthesis. The molecule features a pyramidal phosphorus(III) center bound to three methoxy groups.

<span class="mw-page-title-main">Bis(cyclooctadiene)nickel(0)</span> Chemical compound

Bis(cyclooctadiene)nickel(0) is the organonickel compound with the formula Ni(C8H12)2, also written Ni(cod)2. It is a diamagnetic coordination complex featuring tetrahedral nickel(0) bound to the alkene groups in two 1,5-cyclooctadiene ligands. This highly air-sensitive yellow solid is a common source of Ni(0) in chemical synthesis.

Organoplatinum chemistry is the chemistry of organometallic compounds containing a carbon to platinum chemical bond, and the study of platinum as a catalyst in organic reactions. Organoplatinum compounds exist in oxidation state 0 to IV, with oxidation state II most abundant. The general order in bond strength is Pt-C (sp) > Pt-O > Pt-N > Pt-C (sp3). Organoplatinum and organopalladium chemistry are similar, but organoplatinum compounds are more stable and therefore less useful as catalysts.

<span class="mw-page-title-main">Metal bis(trimethylsilyl)amides</span>

Metal bis(trimethylsilyl)amides are coordination complexes composed of a cationic metal M with anionic bis(trimethylsilyl)amide ligands (the N 2 monovalent anion, or −N 2 monovalent group, and are part of a broader category of metal amides.

<span class="mw-page-title-main">Diethylphosphite</span> Chemical compound

Diethyl phosphite is the organophosphorus compound with the formula (C2H5O)2P(O)H. It is a popular reagent for generating other organophosphorus compounds, exploiting the high reactivity of the P-H bond. Diethyl phosphite is a colorless liquid. The molecule is tetrahedral.

<span class="mw-page-title-main">Triethylphosphine</span> Chemical compound

Triethylphosphine is the organophosphorus compound with the formula P(CH2CH3)3, commonly abbreviated as PEt3. It is a colorless liquid with an unpleasant odor characteristic of alkylphosphines. The compound is a common ligand in organometallic chemistry, such as in auranofin.

<span class="mw-page-title-main">Tetramethylphosphonium bromide</span> A white, water-soluble organophosphorus compound

Tetramethylphosphonium bromide is an organophosphorus compound with the formula (CH3)4PBr. It is a white, water-soluble solid, the salt of the cation tetramethylphosphonium and the bromide anion. It is prepared by treating trimethylphosphine with methyl bromide.

In chemistry, phosphorochloridites are a class of organophosphorus compound with the formula (RO)2PCl (R = organic substituent). They are pyramidal in shape, akin to regular phosphites (P(OR)3). They are usually colorless and sensitive toward hydrolysis and, to some extent, oxidation to the corresponding phosphorochloridates ((RO)2P(O)Cl).

References

  1. Leutkens, M. L. Jr.; Sattelberger, A. P.; Murray, H. H.; Basil, J. D.; Fackler, J. P. Jr. (1990). "Trimethylphosphine". Inorganic Syntheses. Inorganic Syntheses. Vol. 28. pp. 305–310. doi:10.1002/9780470132593.ch76. ISBN   978-0-470-13259-3.
  2. H. N. Rydon (1971). "Alkyl Iodides: Neopentyl Iodide and Iodocyclohexane". Organic Syntheses. 51: 44. doi:10.15227/orgsyn.051.0044.
  3. Ittel, Steven D. (1977). "Olefin, Acetylene, Phosphine, Isocyanide, and Diazene Complexes of Nickel(0)". Inorganic Syntheses. Vol. XVII. pp. 117–124. doi:10.1002/9780470132487.ch34. ISBN   978-0-470-13248-7.
  4. Gerlach, D. H.; Peet, W. G.; Muetterties, E. L. (1972). "Stereochemically Nonrigid Six-Coordinate Molecules. II. Preparations and Reactions of Tetrakis(organophosphorus)metal Dihydride Complexes". Journal of the American Chemical Society. 94 (13): 4545. doi:10.1021/ja00768a022.
  5. Ha, Alice; Cohen, Itai; Zhao, Xiaolin; Lee, Michelle; Kivelson, Daniel (1996). "Supercooled Liquids and Polyamorphism†". The Journal of Physical Chemistry. 100: 1–4. doi:10.1021/jp9530820.
  6. D.G. Golovanov, K.A. Lyssenko, M.Yu. Antipin, Ya.S. Vygodskii, E.I. Lozinskaya, A.S. Shaplov. ”Long-awaited polymorphic modification of triphenyl phosphite“, Cryst. Eng. Comm., 2005, v. 7, no. 77, P.465 – 468. doi: 10.1039/b505052a