True north

Last updated

True north is the direction along Earth's surface towards the place where the imaginary rotational axis of the Earth intersects the surface of the Earth on its northern half, the True North Pole. True south is the direction opposite to the true north.

It is important to make the distinction from magnetic north, which points towards an ever changing location close to the True North Pole determined Earth's magnetic field. Due to fundamental limitations in map projection, true north also differs from the grid north which is marked by the direction of the grid lines on a typical printed map. However, the longitude lines on a globe lead to the true poles, because the three-dimensional representation avoids those limitations.

The celestial pole is the location on the imaginary celestial sphere where an imaginary extension of the rotational axis of the Earth intersects the celestial sphere. Within a margin of error of 1°, the true north direction can be approximated by the position of the pole star Polaris which would currently appear to be very close to the intersection, tracing a tiny circle in the sky each sidereal day. Due to the axial precession of Earth, true north rotates in an arc with respect to the stars that takes approximately 25,000 years to complete. Around 2101–2103, Polaris will make its closest approach to the celestial north pole (extrapolated from recent Earth precession). [1] [2] [3] The visible star nearest the north celestial pole 5,000 years ago was Thuban. [4]

On maps published by the United States Geological Survey (USGS) and the United States Armed Forces, true north is marked with a line terminating in a five-pointed star. [5] The east and west edges of the USGS topographic quadrangle maps of the United States are meridians of longitude, thus indicating true north (so they are not exactly parallel). Maps issued by the United Kingdom Ordnance Survey contain a diagram showing the difference between true north, grid north, and magnetic north at a point on the sheet; the edges of the map are likely to follow grid directions rather than true, and the map will thus be truly rectangular/square.[ citation needed ]

Related Research Articles

<span class="mw-page-title-main">Declination</span> Astronomical coordinate analogous to latitude

In astronomy, declination is one of the two angles that locate a point on the celestial sphere in the equatorial coordinate system, the other being hour angle. The declination angle is measured north (positive) or south (negative) of the celestial equator, along the hour circle passing through the point in question.

<span class="mw-page-title-main">Ecliptic</span> Apparent path of the Sun on the celestial sphere

The ecliptic or ecliptic plane is the orbital plane of Earth around the Sun. From the perspective of an observer on Earth, the Sun's movement around the celestial sphere over the course of a year traces out a path along the ecliptic against the background of stars. The ecliptic is an important reference plane and is the basis of the ecliptic coordinate system.

<span class="mw-page-title-main">Polaris</span> Brightest star in the constellation Ursa Minor

Polaris is a star in the northern circumpolar constellation of Ursa Minor. It is designated α Ursae Minoris and is commonly called the North Star or Pole Star. With an apparent magnitude that fluctuates around 1.98, it is the brightest star in the constellation and is readily visible to the naked eye at night. The position of the star lies less than 1° away from the north celestial pole, making it the current northern pole star. The stable position of the star in the Northern Sky makes it useful for navigation.

<span class="mw-page-title-main">Right ascension</span> Astronomical equivalent of longitude

Right ascension is the angular distance of a particular point measured eastward along the celestial equator from the Sun at the March equinox to the point in question above the Earth. When paired with declination, these astronomical coordinates specify the location of a point on the celestial sphere in the equatorial coordinate system.

<span class="mw-page-title-main">Thuban</span> Star in the constellation of Draco

Thuban, with Bayer designation Alpha Draconis or α Draconis, is a binary star system in the northern constellation of Draco. A relatively inconspicuous star in the night sky of the Northern Hemisphere, it is historically significant as having been the north pole star from the 4th to 2nd millennium BC.

<span class="mw-page-title-main">Azimuth</span> Horizontal angle from north or other reference cardinal direction

An azimuth is the horizontal angle from a cardinal direction, most commonly north, in a local or observer-centric spherical coordinate system.

<span class="mw-page-title-main">Celestial pole</span> Imaginary sky rotation points

The north and south celestial poles are the two points in the sky where Earth's axis of rotation, indefinitely extended, intersects the celestial sphere. The north and south celestial poles appear permanently directly overhead to observers at Earth's North Pole and South Pole, respectively. As Earth spins on its axis, the two celestial poles remain fixed in the sky, and all other celestial points appear to rotate around them, completing one circuit per day.

<span class="mw-page-title-main">Astronomical coordinate systems</span> System for specifying positions of celestial objects

In astronomy, coordinate systems are used for specifying positions of celestial objects relative to a given reference frame, based on physical reference points available to a situated observer. Coordinate systems in astronomy can specify an object's relative position in three-dimensional space or plot merely by its direction on a celestial sphere, if the object's distance is unknown or trivial.

<span class="mw-page-title-main">Equatorial coordinate system</span> Celestial coordinate system used to specify the positions of celestial objects

The equatorial coordinate system is a celestial coordinate system widely used to specify the positions of celestial objects. It may be implemented in spherical or rectangular coordinates, both defined by an origin at the centre of Earth, a fundamental plane consisting of the projection of Earth's equator onto the celestial sphere, a primary direction towards the March equinox, and a right-handed convention.

<span class="mw-page-title-main">Ecliptic coordinate system</span> Celestial coordinate system used to describe Solar System objects

In astronomy, the ecliptic coordinate system is a celestial coordinate system commonly used for representing the apparent positions, orbits, and pole orientations of Solar System objects. Because most planets and many small Solar System bodies have orbits with only slight inclinations to the ecliptic, using it as the fundamental plane is convenient. The system's origin can be the center of either the Sun or Earth, its primary direction is towards the March equinox, and it has a right-hand convention. It may be implemented in spherical or rectangular coordinates.

<span class="mw-page-title-main">Axial precession</span> Change of rotational axis in an astronomical body

In astronomy, axial precession is a gravity-induced, slow, and continuous change in the orientation of an astronomical body's rotational axis. In the absence of precession, the astronomical body's orbit would show axial parallelism. In particular, axial precession can refer to the gradual shift in the orientation of Earth's axis of rotation in a cycle of approximately 26,000 years. This is similar to the precession of a spinning top, with the axis tracing out a pair of cones joined at their apices. The term "precession" typically refers only to this largest part of the motion; other changes in the alignment of Earth's axis—nutation and polar motion—are much smaller in magnitude.

<span class="mw-page-title-main">Axial tilt</span> Angle between the rotational axis and orbital axis of a body

In astronomy, axial tilt, also known as obliquity, is the angle between an object's rotational axis and its orbital axis, which is the line perpendicular to its orbital plane; equivalently, it is the angle between its equatorial plane and orbital plane. It differs from orbital inclination.

<span class="mw-page-title-main">Celestial equator</span> Projection of Earths equator out into space

The celestial equator is the great circle of the imaginary celestial sphere on the same plane as the equator of Earth. By extension, it is also a plane of reference in the equatorial coordinate system. In other words, the celestial equator is an abstract projection of the terrestrial equator into outer space. Due to Earth's axial tilt, the celestial equator is currently inclined by about 23.44° with respect to the ecliptic, but has varied from about 22.0° to 24.5° over the past 5 million years due to perturbation from other planets.

<span class="mw-page-title-main">Magnetic declination</span> Angle on the horizontal plane between magnetic north and true north

Magnetic declination is the angle between magnetic north and true north at a particular location on the Earth's surface. The angle can change over time due to polar wandering.

<span class="mw-page-title-main">Beta Ursae Minoris</span> Star in the constellation Ursa Minor

Kochab, Bayer designation Beta Ursae Minoris, is the brightest star in the bowl of the Little Dipper asterism, and only slightly fainter than Polaris, the northern pole star and brightest star in Ursa Minor. Kochab is 16 degrees from Polaris and has an apparent visual magnitude of 2.08. The distance to this star from the Sun can be deduced from the parallax measurements made during the Hipparcos mission, yielding a value of 130.9 light-years.

<span class="mw-page-title-main">Pole star</span> Visible star that is nearly aligned with Earths axis of rotation

A pole star is a visible star that is approximately aligned with the axis of rotation of an astronomical body; that is, a star whose apparent position is close to one of the celestial poles. On Earth, a pole star would lie directly overhead when viewed from the North or the South Pole.

<span class="mw-page-title-main">Orbital pole</span> Celestial coordinate system

An orbital pole is either point at the ends of the orbital normal, an imaginary line segment that runs through a focus of an orbit and is perpendicular to the orbital plane. Projected onto the celestial sphere, orbital poles are similar in concept to celestial poles, but are based on the body's orbit instead of its equator.

<span class="mw-page-title-main">North magnetic pole</span> Earths magnetic pole in the Northern Hemisphere

The north magnetic pole, also known as the magnetic north pole, is a point on the surface of Earth's Northern Hemisphere at which the planet's magnetic field points vertically downward. There is only one location where this occurs, near the geographic north pole. The geomagnetic north pole is the northern antipodal pole of an ideal dipole model of the Earth's magnetic field, which is the most closely fitting model of Earth's actual magnetic field.

Astronomical nutation is a phenomenon which causes the orientation of the axis of rotation of a spinning astronomical object to vary over time. It is caused by the gravitational forces of other nearby bodies acting upon the spinning object. Although they are caused by the same effect operating over different timescales, astronomers usually make a distinction between precession, which is a steady long-term change in the axis of rotation, and nutation, which is the combined effect of similar shorter-term variations.

Direction determination refers to the ways in which a cardinal direction or compass point can be determined in navigation and wayfinding. The most direct method is using a compass, but indirect methods exist, based on the Sun path, the stars, and satellite navigation.

References

  1. Meeus 1997, p. 305.
  2. McClure 2013.
  3. Smiley & Khan 1959, p. 250.
  4. Ridpath 2004, p. 5: "Around 4800 years ago Thuban (α Draconis) lay a mere 0°.1 from the pole. Deneb (α Cygni) will be the brightest star near the pole in about 8000 years' time, at a distance of 7°.5."
  5. "What do the different north arrows on a USGS topographic map mean?". United States Geological Survey.

Sources