Tumor-homing bacteria

Last updated

Tumor-homing bacteria are facultative or obligate anaerobic bacteria (capable of producing ATP when oxygen is absent or is destroyed in normal oxygen levels) that are able to target cancerous cells in the body, suppress tumor growth and survive in the body for a long time even after the infection. When this type of bacteria is administered into the body, it migrates to the cancerous tissues and starts to grow, and then deploys distinct mechanisms to destroy solid tumors. Each bacteria species uses a different process to eliminate the tumor. Some common tumor homing bacteria include Salmonella, Clostridium, Bifidobacterium, Listeria , and Streptococcus . [1] The earliest research of this type of bacteria was highlighted in 1813 when scientists began observing that patients that had gas gangrene, an infection caused by the bacteria Clostridium , were able to have tumor regressions. [2]

Contents

Tumor-inhibition mechanisms

Different strains of tumor homing bacteria in distinct environments use unique or similar processes to inhibit or destroy tumor growth.

Mechanisms by which bacteria target tumors. Mechanisms by which bacteria target tumors.svg
Mechanisms by which bacteria target tumors.

Unique mechanisms

Similar mechanisms

Confirmed medical treatments

Bacterial cancer therapy is an emerging field for cancer treatment. Although many clinical trials are taking place, as of right now only a few confirmed treatments are being administered to patients.

Treatment with live strains of bacteria

Treatment with genetically engineered bacteria

Tumor homing bacteria can be genetically engineered to enhance their anti-tumor activities and be used to transport therapeutic materials based on medical needs. [7] They are usually transformed into a plasmid that contains the specific gene expression of these therapeutic proteins of the bacteria. After the plasmid reaches the target site, the protein's genetic sequence is expressed and the bacteria can have its full biological effect. Currently, there is no approved treatment with genetically engineered bacteria. However, research is being conducted on Listeria and Clostridium as vectors to transport RNAi (suppresses genes) for colon cancer. [8]

Safety

Some active tumor-homing bacteria can be harmful to the human body, since they produce toxins that disturb the cell cycle which results in altered cell growth and chronic infections. However, many ways to enhance the safety of tumor homing bacteria in the body has been found. For example, when the virulent genes of the bacteria are removed by gene targeting, a process where genes are deleted or modified, it can be reduced in pathogenicity [ citation needed ] (property of causing disease).

Adverse effects

Prevention of adverse effects

Research

The most researched bacteria for cancer therapy are Salmonella, Listeria, and Clostridium. A genetically engineered strain of Salmonella (TAPET-CD) has completed phase 1 clinical trials for patients with stage 4 metastatic cancer. [11] Listeria-based cancer vaccines are currently being produced and are undergoing many clinical trials. [12] Phase I trials of the Clostridium strain called Clostridium novyi (C. novyi-NT) for patients with treatment-refractory tumors or tumors that are unresponsive to treatment is currently underway. [13]

See also

References

  1. 1 2 3 Duong, Mai Thi-Quynh; Qin, Yeshan; You, Sung-Hwan; Min, Jung-Joon (December 2019). "Bacteria-cancer interactions: bacteria-based cancer therapy". Experimental & Molecular Medicine. 51 (12): 1–15. doi:10.1038/s12276-019-0297-0. ISSN   2092-6413. PMC   6906302 . PMID   31827064. S2CID   209169333.
  2. 1 2 3 Zhou, Shibin; Gravekamp, Claudia; Bermudes, David; Liu, Ke (December 2018). "Tumor-targeting bacteria engineered to fight cancer". Nature Reviews. Cancer. 18 (12): 727–743. doi:10.1038/s41568-018-0070-z. ISSN   1474-175X. PMC   6902869 . PMID   30405213.
  3. Kim, Jung-Eun; Phan, Thuy Xuan; Nguyen, Vu Hong; Dinh-Vu, Hong-Van; Zheng, Jin Hai; Yun, Misun; Park, Sung-Gyoo; Hong, Yeongjin; Choy, Hyon E.; Szardenings, Michael; Hwang, Won (2015). "Salmonella typhimurium Suppresses Tumor Growth via the Pro-Inflammatory Cytokine Interleukin-1β". Theranostics. 5 (12): 1328–1342. doi:10.7150/thno.11432. ISSN   1838-7640. PMC   4615736 . PMID   26516371.
  4. Kim, Sun Hee; Castro, Francisco; Paterson, Yvonne; Gravekamp, Claudia (2009-07-15). "High Efficacy of a Listeria-Based Vaccine against Metastatic Breast Cancer Reveals a Dual Mode of Action". Cancer Research. 69 (14): 5860–5866. doi:10.1158/0008-5472.CAN-08-4855. ISSN   0008-5472. PMC   3127451 . PMID   19584282.
  5. Torres, Wheeler; Lameda, Víctor; Olivar, Luis Carlos; Navarro, Carla; Fuenmayor, Jorge; Pérez, Adrián; Mindiola, Andres; Rojas, Milagros; Martínez, María Sofía; Velasco, Manuel; Rojas, Joselyn (2018-01-24). "Bacteria in cancer therapy: beyond immunostimulation". Journal of Cancer Metastasis and Treatment. 4: 4. doi: 10.20517/2394-4722.2017.49 . ISSN   2394-4722.
  6. Mi, Ze; Feng, Zhi-Chao; Li, Cheng; Yang, Xiao; Ma, Meng-Tian; Rong, Peng-Fei (2019-08-20). "Salmonella-Mediated Cancer Therapy: An Innovative Therapeutic Strategy". Journal of Cancer. 10 (20): 4765–4776. doi:10.7150/jca.32650. ISSN   1837-9664. PMC   6775532 . PMID   31598148.
  7. Sieow, Brendan Fu-Long; Wun, Kwok Soon; Yong, Wei Peng; Hwang, In Young; Chang, Matthew Wook (December 2020). "Tweak to Treat: Reprograming Bacteria for Cancer Treatment". Trends in Cancer. 7 (5): 447–464. doi: 10.1016/j.trecan.2020.11.004 . ISSN   2405-8033. PMID   33303401.
  8. Chien, Tiffany; Doshi, Anjali; Danino, Tal (October 2017). "Advances in bacterial cancer therapies using synthetic biology". Current Opinion in Systems Biology. 5: 1–8. doi:10.1016/j.coisb.2017.05.009. ISSN   2452-3100. PMC   5986102 . PMID   29881788.
  9. Patyar, S; Joshi, R; Byrav, DS Prasad; Prakash, A; Medhi, B; Das, BK (2010-03-23). "Bacteria in cancer therapy: a novel experimental strategy". Journal of Biomedical Science. 17 (1): 21. doi: 10.1186/1423-0127-17-21 . ISSN   1021-7770. PMC   2854109 . PMID   20331869.
  10. Toso, John F.; Gill, Vee J.; Hwu, Patrick; Marincola, Francesco M.; Restifo, Nicholas P.; Schwartzentruber, Douglas J.; Sherry, Richard M.; Topalian, Suzanne L.; Yang, James C.; Stock, Frida; Freezer, Linda J. (2002-01-01). "Phase I Study of the Intravenous Administration of Attenuated Salmonella typhimurium to Patients With Metastatic Melanoma". Journal of Clinical Oncology. 20 (1): 142–152. doi:10.1200/JCO.2002.20.1.142. ISSN   0732-183X. PMC   2064865 . PMID   11773163.
  11. Cunningham, C.; Nemunaitis, J. (2001-08-10). "A phase I trial of genetically modified Salmonella typhimurium expressing cytosine deaminase (TAPET-CD, VNP20029) administered by intratumoral injection in combination with 5-fluorocytosine for patients with advanced or metastatic cancer. Protocol no: CL-017. Version: April 9, 2001". Human Gene Therapy. 12 (12): 1594–1596. ISSN   1043-0342. PMID   11529249.
  12. Flickinger, John C.; Rodeck, Ulrich; Snook, Adam E. (2018-07-25). "Listeria monocytogenes as a Vector for Cancer Immunotherapy: Current Understanding and Progress". Vaccines. 6 (3): 48. doi: 10.3390/vaccines6030048 . ISSN   2076-393X. PMC   6160973 . PMID   30044426.
  13. Staedtke, Verena; Roberts, Nicholas J.; Bai, Ren-Yuan; Zhou, Shibin (2016-02-06). "Clostridium novyi-NT in cancer therapy". Genes & Diseases. 3 (2): 144–152. doi:10.1016/j.gendis.2016.01.003. ISSN   2352-4820. PMC   6150096 . PMID   30258882.