Ueli Schibler

Last updated
Ueli Schibler
Born (1947-06-16) June 16, 1947 (age 76)
CitizenshipSwiss Citizen
Alma mater University of Bern
AwardsAschoff Honma Prize of the Honma Foundation,
Louis-Jeantet Prize for Medicine (2000) [1]
Scientific career
Fields Molecular biology, Chronobiology
Notes
Hobby: herpetology

Ueli Schibler (born June 16, 1947) [2] is a Swiss biologist, chronobiologist and a professor at the University of Geneva. His research has contributed significantly to the field of chronobiology and the understanding of circadian clocks in the body. Several of his studies have demonstrated strong evidence for the existence of robust, self-sustaining circadian clocks in the peripheral tissues. [3]

Contents

Schibler has studied the molecular biology of gene expressions and chronobiology since his serendipitous discovery of a protein expressed in a strong circadian fashion. He is also a current editor for several academic journals, such as PLoS Biology, EMBOReports and Journal of Biological Rhythms.

Biography

Early life and family

Ueli Schibler was born in 1947 in Olten, a small town in Switzerland. His father was a sculptor who manufactured monuments, and his mother helped manage the family business. In 1972, Ueli Schibler married with Monika Schibler, who he met at the age of 19, and had a son and daughter. His son was born in Philadelphia in 1977 when Ueli was a postdoc at Fox Chase Cancer Center while his daughter was born in 1979, one year after they moved back to Switzerland. Currently, Ueli Schibler resides in Switzerland and works in University of Geneva as a professor at the Department of Molecular Biology. Monika and Ueli Schibler are now grandparents and have three grandchildren.

Education and academic experiences

Over 5 years from 1967 to 1972, Schibler pursued the study of biology, biochemistry, and chemistry at the University of Bern, approximately seventy kilometers from his hometown of Olten. At graduation, he was awarded a Diploma in Biology. Afterwards, he continued his education there, eventually receiving his PhD diploma with Latin Honors in 1975 for his work on ribosomal RNA in the context of vertebrate evolution. [2] He then obtained a postdoctoral fellowship from the Swiss National Science Foundation and worked at the laboratory of Robert Perry, who was based at the Fox Chase Cancer Center in Philadelphia for two years. In 1978, he became a junior group leader at The Swiss Institute for Experimental Cancer Research. In 1981, he was promoted to the status of a group leader with tenure, where he remained for three years. Finally, in 1984, he obtained a full professorship at the Department of Molecular Biology at the University of Geneva, where he currently resides. [4]

Serendipitous discovery

Schibler was thrust into the world of chronobiology on a single chance discovery. While examining transcription of serum albumin gene in the liver, they discovered a DNA Binding Protein (DBP) for the albumin promoter that happened to be rhythmic in its expression. While they initially thought that the underlying mechanism was the rhythmic secretion of hormones, it became clear that the rhythmic expression of DBP was driven instead by cell-autonomous oscillators that are entrained by the master clock in the Suprachiasmatic Nucleus (SCN). Schibler and his colleagues followed this line of inquiry into the field of chronobiology. [5]

Current research

A timing system with circadian clocks is closely related to all behaviors in mammals. Schibler is currently doing researches on how biological clock works. Schibler together with his research team in University of Geneva have developed a technique called "Synthetic Tandem Repeat PROMoter (STAR-PROM) screening" which can assist identify transcription factors and their functions in peripheral cells so that to figure out how circadian gene expression is governed rhythmically with regulatory mechanisms in cultured cells. [6]

Scientific achievements

Evidence of circadian clocks in peripheral tissues

While at the Department of Molecular Biology at the University of Geneva, Schibler's research team unexpectedly came across DBP, a transcriptional regulatory protein whose expression was found to be robustly circadian in the liver. This discovery prompted Schibler and his team to further investigate the role of circadian clocks in peripheral tissue. [2]

In a 1998 study, Schibler and his team published a paper providing strong evidence for the existence of circadian clocks in mammalian peripheral tissue. [3] The study demonstrated that "immortalized rat fibroblasts", frozen in cell culture for 25 years, were still capable of expressing strong circadian rhythms. After an initial serum-shock, both rat-1 fibroblasts and H35 hepatoma cells demonstrated cyclic mRNA expression of clock genes rper1 and rper2, and Rev-Erbα, and the clock controlled genes Tef and Dbp, with a period of nearly 24 hours and a phase relationship closely mimicking those observed in rat liver cells in vivo. [7]

Circadian rhythms in peripheral tissue persist during cell division

In a 2004 study that provided further evidence for the existence of self-sustained, autonomous oscillators in the peripheral tissue, [8] Schibler and his colleagues found evidence for interaction between the circadian clock and the timing of cell division. Single-cell recordings revealed how circadian gene expression in fibroblasts persists during cell division, and how cell division can phase shift the circadian cycle of the dividing cells. [9] Due to the central role of Period (PER) and Cryptochrome (CRY) proteins in the negative feedback loop of the circadian clock, Schibler and colleagues posited the PER-CRY complex concentration to be the likely determinant of the phase of the clock. [10] When cell division frequency was plotted against circadian time, this yielded a highly nonrandom distribution, suggesting a gating mechanism of mitosis by the circadian clock [9]

Feeding Rhythms are Strong Zeitgebers for Peripheral Clocks

Schibler and his colleagues have also studied mechanisms by which peripheral oscillators are synchronized within the body. In 2000, they conducted experiments on the effects of restricted feeding time on mice and observed that the phase of peripheral oscillators – but not that of the SCN – gradually adapted to imposed feeding-fasting rhythms within a week or two. [11] These results showed that feeding time functions as a potent Zeitgeber for peripheral cells, but not for the SCN. Schibler and colleagues posited that the SCN can synchronize peripheral clocks simply by imposing rest-activity cycles, which in turn drive feeding-fasting cycles. However, in the meantime they discovered additional pathways involved in the phase-resetting of peripheral clocks, such as signaling by glucocorticoid hormones, [12] body temperature, [13] and actin dynamics. [14]

REV-ERBα is a Major Regulator of the Circadian Clock

In 2002, Schibler and his colleagues identified the nuclear orphan receptor REV-ERBα as the major regulator of expression of the circadian gene Bmal1 in both the SCN and peripheral tissues. BMAL-1, as a heterodimer with CLOCK activates the transcription of the components of the negative limb encoding PER and CRY repressor proteins. Together, the feedback loop of the positive limb and its effects on the negative limb produce the mammalian circadian rhythms in clock gene expression. REV-ERBα and its paralog REV-ERBβ are the molecular links between these two feedback loops. [15] [16]

Research experience

Plenary and honorary lectures since 2007

  1. Werner Heisenberg Lecture, Bavarian Academy of Sciences and C. F. von Siemens Foundation, Munich, Germany
  2. EMBO Lecture, 15th P450 Conference, Bled, Slovenia
  3. Plenary Lecture, 9th European Congress of Endocrinology, Budapest, Hungary
  4. Plenary Lecture, IPSEN Meeting: The Evolving Biology of Growth and Metabolism, Lisbon, Portugal
  1. Mendel Lecture, Augustinian Abbey in Brno, Czech Republic
  2. University Lecture, UT Southwestern Medical Center, Dallas, USA
  1. Keynote Address, EMBO Conference on Nuclear Receptors, Sitges, Spain
  2. Plenary Lecture, 10th Annual World Congress of the Human Proteome Organization, Geneva, Switzerland
  3. Plenary Lecture, XII Congress of the European Biological Rhythms Society, Oxford, UK
  4. Karl-Friedrich Bonhoeffer Lecture, Max Planck Institute for Biophysical Chemistry, Germany
  1. Kjeldgaard International Lecture in Molecular Biology, Aarhus University, Denmark
  2. Plenary Lecture, 14ème Réunion Commune des Sociétés Francophones de Néphrologie et de Dialyse, Geneva
  3. Plenary Lecture, 4th Congress European Academy of Paediatric Societies (EAPS), Istanbul, Turkey
  4. Plenary Lecture, SGED-SSED Annual Meeting, Berne
  5. Aschoff-Honma Prize Lecture, Sapporo, Japan
  1. Plenary Lecture, International Congress of Comparative Endocrinology, Barcelona, Spain
  2. Plenary Lecture, XIII Congress of the European Biological Rhythms Society, Munich, Germany
  1. Elected Richard M. Furlaud Distinguished Lecturer of 2013, Rockefeller University, New York, USA (Lecture held on February 14, 2014)
  2. "Servier Honorary Lecture" at the Open Ceremony of the World Congress of Osteoporosis, Osteoarthritis and Musculoskeletal Diseases, Seville, Spain

Notable papers

See also

Related Research Articles

<span class="mw-page-title-main">Circadian rhythm</span> Natural internal process that regulates the sleep-wake cycle

A circadian rhythm, or circadian cycle, is a natural oscillation that repeats roughly every 24 hours. Circadian rhythms can refer to any process that originates within an organism and responds to the environment. Circadian rhythms are regulated by a circadian clock whose primary function is to rhythmically co-ordinate biological processes so they occur at the correct time to maximise the fitness of an individual. Circadian rhythms have been widely observed in animals, plants, fungi and cyanobacteria and there is evidence that they evolved independently in each of these kingdoms of life.

<span class="mw-page-title-main">Suprachiasmatic nucleus</span> Part of the brains hypothalamus

The suprachiasmatic nucleus or nuclei (SCN) is a small region of the brain in the hypothalamus, situated directly above the optic chiasm. The SCN is the principal circadian pacemaker in mammals, responsible for generating circadian rhythms. Reception of light inputs from photosensitive retinal ganglion cells allow the SCN to coordinate the subordinate cellular clocks of the body and entrain to the environment. The neuronal and hormonal activities it generates regulate many different body functions in an approximately 24-hour cycle.

<span class="mw-page-title-main">CREB</span> Class of proteins

CREB-TF is a cellular transcription factor. It binds to certain DNA sequences called cAMP response elements (CRE), thereby increasing or decreasing the transcription of the genes. CREB was first described in 1987 as a cAMP-responsive transcription factor regulating the somatostatin gene.

A circadian clock, or circadian oscillator, is a biochemical oscillator that cycles with a stable phase and is synchronized with solar time.

<span class="mw-page-title-main">NPAS2</span> Protein-coding gene in the species Homo sapiens

Neuronal PAS domain protein 2 (NPAS2) also known as member of PAS protein 4 (MOP4) is a transcription factor protein that in humans is encoded by the NPAS2 gene. NPAS2 is paralogous to CLOCK, and both are key proteins involved in the maintenance of circadian rhythms in mammals. In the brain, NPAS2 functions as a generator and maintainer of mammalian circadian rhythms. More specifically, NPAS2 is an activator of transcription and translation of core clock and clock-controlled genes through its role in a negative feedback loop in the suprachiasmatic nucleus (SCN), the brain region responsible for the control of circadian rhythms.

<span class="mw-page-title-main">Rev-ErbA alpha</span> Protein-coding gene in the species Homo sapiens

Rev-Erb alpha (Rev-Erbɑ), also known as nuclear receptor subfamily 1 group D member 1 (NR1D1), is one of two Rev-Erb proteins in the nuclear receptor (NR) family of intracellular transcription factors. In humans, REV-ERBɑ is encoded by the NR1D1 gene, which is highly conserved across animal species.

<span class="mw-page-title-main">Period circadian protein homolog 1</span> Protein-coding gene in the species Homo sapiens

Period circadian protein homolog 1 is a protein in humans that is encoded by the PER1 gene.

<span class="mw-page-title-main">RAR-related orphan receptor gamma</span> Cellular receptor

RAR-related orphan receptor gamma (RORγ) is a protein that in humans is encoded by the RORC gene. RORγ is a member of the nuclear receptor family of transcription factors. It is mainly expressed in immune cells and it also regulates circadian rhythms. It may be involved in the progression of certain types of cancer.

Michael Menaker, was an American chronobiology researcher, and was Commonwealth Professor of Biology at University of Virginia. His research focused on circadian rhythmicity of vertebrates, including contributing to an understanding of light input pathways on extra-retinal photoreceptors of non-mammalian vertebrates, discovering a mammalian mutation for circadian rhythmicity, and locating a circadian oscillator in the pineal gland of bird. He wrote almost 200 scientific publications.

Hitoshi Okamura is a Japanese scientist who specializes in chronobiology. He is currently a professor of Systems Biology at Kyoto University Graduate School of Pharmaceutical Sciences and the Research Director of the Japan Science Technology Institute, CREST. Okamura's research group cloned mammalian Period genes, visualized clock oscillation at the single cell level in the central clock of the SCN, and proposed a time-signal neuronal pathway to the adrenal gland. He received a Medal of Honor with Purple Ribbon in 2007 for his research and was awarded Aschoff's Ruler for his work on circadian rhythms in rodents. His lab recently revealed the effects of m6A mRNA methylation on the circadian clock, neuronal communications in jet lag, and the role of dysregulated clocks in salt-induced hypertension.

Steve A. Kay is a British-born chronobiologist who mainly works in the United States. Dr. Kay has pioneered methods to monitor daily gene expression in real time and characterized circadian gene expression in plants, flies and mammals. In 2014, Steve Kay celebrated 25 years of successful chronobiology research at the Kaylab 25 Symposium, joined by over one hundred researchers with whom he had collaborated with or mentored. Dr. Kay, a member of the National Academy of Sciences, U.S.A., briefly served as president of The Scripps Research Institute. and is currently a professor at the University of Southern California. He also served on the Life Sciences jury for the Infosys Prize in 2011.

The Society for Research on Biological Rhythms (SRBR) is an international chronobiological research society with three key goals:

  1. to promote the advancement and dissemination of basic and applied research in all aspects of biological rhythms.
  2. to enhance the education and training of students and researchers in the field.
  3. to foster interdisciplinary communication and an international exchange of ideas.

Paul Hardin is an American scientist in the field of chronobiology and a pioneering researcher in the understanding of circadian clocks in flies and mammals. Hardin currently serves as a distinguished professor in the biology department at Texas A&M University. He is best known for his discovery of circadian oscillations in the mRNA of the clock gene Period (per), the importance of the E-Box in per activation, the interlocked feedback loops that control rhythms in activator gene transcription, and the circadian regulation of olfaction in Drosophila melanogaster. Born in a suburb of Chicago, Matteson, Illinois, Hardin currently resides in College Station, Texas, with his wife and three children.

Transcription-translation feedback loop (TTFL) is a cellular model for explaining circadian rhythms in behavior and physiology. Widely conserved across species, the TTFL is auto-regulatory, in which transcription of clock genes is regulated by their own protein products.

Hajime Tei is a Japanese neuroscientist specializing in the study of chronobiology. He currently serves as a professor at the Kanazawa University Graduate School of Natural Science & Technology. He is most notable for his contributions to the discovery of the mammalian period genes, which he discovered alongside Yoshiyuki Sakaki and Hitoshi Okamura.

Carla Beth Green is an American neurobiologist and chronobiologist. She is a professor in the Department of Neuroscience and a Distinguished Scholar in Neuroscience at the University of Texas Southwestern Medical Center. She is the former president of the Society for Research on Biological Rhythms (SRBR), as well as a satellite member of the International Institute for Integrative Sleep Medicine at the University of Tsukuba in Japan.

In the field of chronobiology, the dual circadian oscillator model refers to a model of entrainment initially proposed by Colin Pittendrigh and Serge Daan. The dual oscillator model suggests the presence of two coupled circadian oscillators: E (evening) and M (morning). The E oscillator is responsible for entraining the organism’s evening activity to dusk cues when the daylight fades, while the M oscillator is responsible for entraining the organism’s morning activity to dawn cues, when daylight increases. The E and M oscillators operate in an antiphase relationship. As the timing of the sun's position fluctuates over the course of the year, the oscillators' periods adjust accordingly. Other oscillators, including seasonal oscillators, have been found to work in conjunction with circadian oscillators in order to time different behaviors in organisms such as fruit flies.

<span class="mw-page-title-main">Sato Honma</span>

Sato Honma is a Japanese chronobiologist who researches the biological mechanisms of circadian rhythms. She mainly collaborates with Ken-Ichi Honma on publications, and both of their primary research focuses are the human circadian clock under temporal isolation and the mammalian suprachiasmatic nucleus (SCN), its components, and associates. Honma is a retired professor at the Hokkaido University School of Medicine in Sapporo, Japan. She received her Ph.D. in physiology from Hokkaido University. She taught physiology at the School of Medicine and then at the Research and Education Center for Brain Science at Hokkaido University. She is currently the director at the Center for Sleep and Circadian Rhythm Disorders at Sapporo Hanazono Hospital and works as a somnologist.

The food-entrainable oscillator (FEO) is a circadian clock that can be entrained by varying the time of food presentation. It was discovered when a rhythm was found in rat activity. This was called food anticipatory activity (FAA), and this is when the wheel-running activity of mice decreases after feeding, and then rapidly increases in the hours leading up to feeding. FAA appears to be present in non-mammals (pigeons/fish), but research heavily focuses on its presence in mammals. This rhythmic activity does not require the suprachiasmatic nucleus (SCN), the central circadian oscillator in mammals, implying the existence of an oscillator, the FEO, outside of the SCN, but the mechanism and location of the FEO is not yet known. There is ongoing research to investigate if the FEO is the only non-light entrainable oscillator in the body.

Ken-Ichi Honma is a Japanese chronobiologist who researches the biological mechanisms underlying circadian rhythms. After graduating from Hokkaido University School of Medicine, he practiced clinical psychiatry before beginning his research. His recent research efforts are centered around photic and non-photic entrainment, the structure of circadian clocks, and the ontogeny of circadian clocks. He often collaborates with his wife, Sato Honma, in work involving the mammalian suprachiasmatic nucleus (SCN), its components, and associated topics.

References

  1. Louis-Jeantet Prize
  2. 1 2 3 "Professeur Ueli Schibler, EMBO/EMBL Conference".
  3. 1 2 Reppert, Steven; Weaver, David (29 August 2002). "Coordination of Circadian Timing in Mammals". Nature. 418 (6901): 935–941. Bibcode:2002Natur.418..935R. doi:10.1038/nature00965. PMID   12198538.
  4. "Professeur Ueli Schibler, F1000 Prime Profile".
  5. Preitner N; Brown S; Ripperger J; Le-Minh N; Damiola F; Schibler U (25 June 2004). Molecular Clocks and Light Signalling. Novartis Foundation. John Wiley & Sons. p. 89. ISBN   978-0-470-09082-4.
  6. "Identifying all factors modulating gene expression is actually possible, PHYS.ORG".
  7. Balsalobre, Aurélio; Damiola, Francesca; Schibler, Ueli (12 June 1998). "A Serum Shock Induces Circadian Gene Expression In Mammalian Tissue Culture Cells". Cell. 93 (6): 929–937. doi: 10.1016/s0092-8674(00)81199-x . PMID   9635423.
  8. Takahashi, Joseph; Hong, Hee-Kyung; Ko, Caroline; McDearmon, Erin (9 October 2008). "The genetics of mammalian circadian order and disorder: implications for physiology and disease". Nature Reviews Genetics. 9 (10): 764–775. doi:10.1038/nrg2430. PMC   3758473 . PMID   18802415.
  9. 1 2 Nagoshi, Emi; Saini, Camille; Bauer, Christoph; Laroche, Thierry; Naef, Felix; Schibler, Ueli (24 November 2004). "Circadian Gene Expression in Individual Fibroblasts: Cell-Autonomous and Self-Sustained Oscillators Pass Time to Daughter Cells". Cell. 119 (5): 693–705. doi: 10.1016/j.cell.2004.11.015 . PMID   15550250.
  10. Bae, Kiho; Jin, Xiaowei; Maywood, Elizabeth; Hastings, Michael; Reppert, Steven; Weaver, David (May 2001). "Differential Functions of mPer1, mPer2, and mPer3 in the SCN Circadian Clock". Neuron. 30 (2): 525–536. doi: 10.1016/S0896-6273(01)00302-6 . PMID   11395012.
  11. Damiola, Francesca; Le Minh, Nguyet; Preitner, Nicolas; Kornmann, Benoît; Fleury-Olela, Fabienne; Ueli, Schibler (9 October 2000). "Restricted feeding uncouples circadian oscillators in peripheral tissues from the central pacemaker in the suprachiasmatic nucleus". Genes & Development. 14 (23): 2950–61. doi:10.1101/gad.183500. PMC   317100 . PMID   11114885.
  12. Balsalobre, Aurélio; Brown, Steven; Marcacci, Lysiane; Tronche, Francois; Kellendonk, Christoph; Reichardt, Holger; Schütz, Günther; Schibler, Ueli (September 2000). "Resetting of Circadian Time in Peripheral Tissues by Glucocorticoid Signaling". Science. 289 (29): 2344–2347. doi:10.1126/science.289.5488.2344. PMID   11009419.
  13. Brown, Steven; Zumbrunn, Gottlieb; Fleury-Olela, Fabienne; Preitner, Nicolas; Schibler, Ueli (17 September 2002). "Rhythms of Mammalian Body Temperature Can Sustain Peripheral Circadian Clocks". Cell. 12 (18): 1574–1583. doi: 10.1016/S0960-9822(02)01145-4 . PMID   12372249.
  14. Gerber, Alan; Esnault, Cyril; Aubert, Gregory; Treisman, Richard; Pralong, Francois; Schibler, Ueli (31 January 2013). "Blood-Borne Circadian Signal Stimulates Daily Oscillations in Actin Dynamics and SRF Activity". Cell. 152 (3): 492–503. doi: 10.1016/j.cell.2012.12.027 . PMID   23374345.
  15. Cho, Han; Zhao, Xuan; Hatori, Megumi; Yu, Ruth; Barish, Grant; Lam, Michael; Chong, Ling-Wa; DiTacchio, Luciano; Atkins, Annette; Glass, Christopher; Liddle, Christopher; Auwrex, Johan; Downes, Michael; Panda, Satchidananda; Evans, Ronald (29 March 2012). "Regulation of Circadian Behavior and Metabolism by Rev-erbα and Rev-erbβ". Nature. 485 (7396): 123–127. doi:10.1038/nature11048. PMC   3367514 . PMID   22460952.
  16. Bugge, Anne; Feng, Dan; Everett, Logan; Briggs, Erika; Mullican, Shannon; Wang, Fenfen; Jager, Jennifer; Lazer, Mitchell (1 April 2012). "Rev-erbα and Rev-erbβ coordinately protect the circadian clock and normal metabolic function". Genes & Development. 26 (7): 657–667. doi:10.1101/gad.186858.112. PMC   3323877 . PMID   22474260.