Ulva linza

Last updated

Ulva linza
Ulva linza Helgoland.JPG
Scientific classification Red Pencil Icon.png
(unranked): Viridiplantae
Division: Chlorophyta
Class: Ulvophyceae
Order: Ulvales
Family: Ulvaceae
Genus: Ulva
Species:
U. linza
Binomial name
Ulva linza
Linnaeus, 1753
Synonyms
  • Enteromorpha linza

Ulva linza is a green alga in the family Ulvaceae that can be found in British Isles. [1]

Contents

Description

Ulva (Enteromorpha) linza (Linnaeus) [2] is a 30 centimetres (12 in) (sometimes 45 centimetres (18 in)) [3] long green alga that grows in bright green clusters of tubes or flat strips. It has unbranched thalli that often have a frilled margin. The thallus middle is greater than its base and can be as wide as 5 centimetres (2.0 in). [1] Its ruffled blades are 1–4 centimetres (0.39–1.57 in) long while its cells are 10–15 micrometres (0.00039–0.00059 in) in diameter. [4]

Ulva linza found in Rhode Island have branched or unbranched flattened tubes. [5] The thallus length ranges from 1.9 –36 cm with a mean length of 18.6 cm. The thallus width ranges from 0.2 to 4.8 cm with a mean width of 1.4 cm. [5] Ulva linza can be distinguished by its smooth thallus, most with a ruffled margin. [5] Ulva linza can tolerate a wide range of salinities and water qualities. [6] Laboratory experiments have shown a broad tolerance to the environmental conditions of irradiance, temperature, salinity, and a wide range of nitrogen and phosphorus concentrations. [7]

Photo of Ulva linza in Narragansett Bay, Rhode Island. Photo by Kayla Kurtz. Ulva linza.jpg
Photo of Ulva linza in Narragansett Bay, Rhode Island. Photo by Kayla Kurtz.
Photo of Ulva linza harvested from Narragansett Bay, Rhode Island. Photo by Kayla Kurtz. Ulva linza harvested in Spring 2019.jpg
Photo of Ulva linza harvested from Narragansett Bay, Rhode Island. Photo by Kayla Kurtz.

Ulva linza alternates between sexual (gametophyte producing gametes) and asexual (sporophyte producing zoospores) stages. Spores with two or four flagella are released from the thalli. Zoospores with four flagella (quadriflagellated zoospores) rapidly settle on surfaces. Biflagellate spores are typed as female (+) gametes, male (-) gametes, or asexual biflagellate zoospores. [6]

Ulva species have been reported as a dominant species leading to blooms of green macroalgae often referred to as “green tides.” These green tides and marine fouling are attributed to their thallus morphological characteristics, fast growth rates in eutrophic ecosystems, and rapid uptake and assimilation of nutrients. [8] These blooms are generally explained by eutrophication caused by increased nutrient loads (i.e., nitrogen and phosphorus) from events such as runoff, sewage outflow, and upwelling. [8]

Habitat

They are littoral and sublittoral species which grow in muddy estuaries attached to pebbles or docks. They also can be found on rocks or in rock pools. [1] Ulva linza can be found in the upper intertidal zone of seashores. [9]

Ulva linza has been found in Wembury beach, UK, [2] Narragansett Bay, Rhode Island, [5] the British Isles, [5] and China. [5]

Uses

The species is edible and therefore can be used as food and in cosmetic products. [3] Ulva linza is used as a model organism for biofouling in marine environments. [9] It has been found on a variety of man-made structures including ships’ hulls. [10]

Related Research Articles

<span class="mw-page-title-main">Chlorophyta</span> Phylum of green algae

Chlorophyta or Prasinophyta is a taxon of green algae informally called chlorophytes. The name is used in two very different senses, so care is needed to determine the use by a particular author. In older classification systems, it refers to a highly paraphyletic group of all the green algae within the green plants (Viridiplantae) and thus includes about 7,000 species of mostly aquatic photosynthetic eukaryotic organisms. In newer classifications, it refers to the sister clade of the streptophytes/charophytes. The clade Streptophyta consists of the Charophyta in which the Embryophyta emerged. In this latter sense the Chlorophyta includes only about 4,300 species. About 90% of all known species live in freshwater. Like the land plants, green algae contain chlorophyll a and chlorophyll b and store food as starch in their plastids.

<span class="mw-page-title-main">Sea lettuce</span> Genus of seaweeds

The sea lettuces comprise the genus Ulva, a group of edible green algae that is widely distributed along the coasts of the world's oceans. The type species within the genus Ulva is Ulva lactuca, lactuca being Latin for "lettuce". The genus also includes the species previously classified under the genus Enteromorpha, the former members of which are known under the common name green nori.

<i>Caulerpa</i> Genus of seaweeds

Caulerpa is a genus of seaweeds in the family Caulerpaceae. They are unusual because they consist of only one cell with many nuclei, making them among the biggest single cells in the world. A species in the Mediterranean can have a stolon more than 3 metres (9.8 ft) long, with up to 200 fronds. This species can be invasive from time to time.

<i>Ulva lactuca</i> Species of chlorophyte green alga

Ulva lactuca, also known by the common name sea lettuce, is an edible green alga in the family Ulvaceae. It is the type species of the genus Ulva. A synonym is U. fenestrata, referring to its "windowed" or "holed" appearance.

<i>Halimeda</i> Genus of algae

Halimeda is a genus of green macroalgae. The algal body (thallus) is composed of calcified green segments. Calcium carbonate is deposited in its tissues, making it inedible to most herbivores. However one species, Halimeda tuna, was described as pleasant to eat with oil, vinegar, and salt.

In botany, a zoid or zoïd is a reproductive cell that possesses one or more flagella, and is capable of independent movement. Zoid can refer to either an asexually reproductive spore or a sexually reproductive gamete. In sexually reproductive gametes, zoids can be either male or female depending on the species. For example, some brown alga (Phaeophyceae) reproduce by producing multi-flagellated male and female gametes that recombine to form the diploid sporangia. Zoids are primarily found in some protists, diatoms, green alga, brown alga, non-vascular plants, and a few vascular plants. The most common classification group that produces zoids is the heterokonts or stramenopiles. These include green alga, brown alga, oomycetes, and some protists. The term is generally not used to describe motile, flagellated sperm found in animals. Zoid is also commonly confused for zooid which is a single organism that is part of a colonial animal.

<i>Bryopsis</i> Genus of algae

Bryopsis is a genus of marine green algae in the family Bryopsidaceae. It is frequently a pest in aquariums, where it is commonly referred to as hair algae.

<i>Dictyosphaeria</i> Genus of algae

Dictyosphaeria is a genus of green algae in the family Siphonocladaceae.

<i>Monostroma</i> Genus of algae

Monostroma is a genus of marine green algae (seaweed) in the family Monostromataceae. As the name suggests, algae of this genus are monostromatic. Monostroma kuroshiense, an algae of this genus, is commercially cultivated in East Asia and South America for the edible product "hitoegusa-nori" or "hirohano-hitoegusa nori", popular sushi wraps. Monostroma oligosaccharides with degree of polymerization 6 prepared by agarase digestion from Monostroma nitidum polysaccharides have been shown to be an effective prophylactic agent during in vitro and in vivo tests against Japanese encephalitis viral infection. The sulfated oligosaccharides from Monostroma seem to be promising candidates for further development as antiviral agents. The genus Monostroma is the most widely cultivated genus among green seaweeds.

<i>Trebouxia</i> Genus of algae

Trebouxia is a unicellular green alga. It is a photosynthetic organism that can exist in almost all habitats found in polar, tropical, and temperate regions. It can either exist in a symbiotic relationship with fungi in the form of lichen or it can survive independently as a free-living organism alone or in colonies. Trebouxia is the most common photobiont in extant lichens. It is a primary producer of marine, freshwater and terrestrial ecosystems. It uses carotenoids and chlorophyll a and b to harvest energy from the sun and provide nutrients to various animals and insects.

<i>Udotea</i> Genus of algae

Udotea is a genus of green algae in the family Udoteaceae.

The genus Umbraulva, which is a green alga within the Ulvaceae family, was proposed by Bae and Lee in 2001. Three additional species, including U. kuaweuweu, which was subsequently transferred to another genus, have been added to the genus since it originally had the three species that were initially examined to form the genus. Umbraulva species grow upon hard substrates, and inhabit deep subtidal areas. Species within this genus are widely distributed, and have been identified in Asia, Europe, Hawaii, and New Zealand. The morphological traits of Umbraulva vary among species, but commonly, Umbraulva are macroscopic with olive green blades containing the photosynthetic pigment siphonaxanthin. The blades are flattened and ellipsoid in shape, or are narrow and oval shaped, with perforations and/or lobes present throughout the blade. As Umbraulva often appear very similar in morphology to closely related groups, the main manner in which Umbraulva was differentiated from related groups was through the divergence of ITS and partial SSU rDNA sequences from those of other Ulva species. Umbraulva is closely related to Ulva, which due to wide distributions, high carbohydrate levels, and a lack of lignin, is a good candidate for use in biofuel, bioremediation, carbon sequestration, and animal feed production.

<i>Ulva intestinalis</i> Species of marine chlorophyte green alga

Ulva intestinalis is a green alga in the family Ulvaceae, known by the common names sea lettuce, green bait weed, gutweed, and grass kelp. Until they were reclassified by genetic work completed in the early 2000s, the tubular members of the sea lettuce genus Ulva were placed in the genus Enteromorpha.

A biomimetic antifouling coating is a treatment that prevents the accumulation of marine organisms on a surface. Typical antifouling coatings are not biomimetic but are based on synthetic chemical compounds that can have deleterious effects on the environment. Prime examples are tributyltin compounds, which are components in paints to prevent biofouling of ship hulls. Although highly effective at combatting the accumulation of barnacles and other problematic organisms, organotin-containing paints are damaging to many organisms and have been shown to interrupt marine food chains.

<i>Blidingia minima</i> Species of alga

Blidingia minima is a species of seaweed in the Kornmanniaceae family. It was described by Johann Kylin in 1947.

<i>Allomyces</i> Genus of fungi

Allomyces is a genus of fungi in the family Blastocladiaceae. It was circumscribed by British mycologist Edwin John Butler in 1911. Species in the genus have a polycentric thallus and reproduce sexually or asexually by zoospores that have a whiplash-like flagella. They are mostly isolated from soils in tropical countries, commonly in ponds, rice fields, and slow-moving rivers.

<i>Ulvaria obscura</i> Species of alga

Ulvaria obscura is an intertidal and subtidal benthic marine algae found in temperate and Arctic ocean waters around the world.

<i>Ulva paschima</i> Species of seaweed

Ulva paschima is a green alga in the family Ulvaceae, a green seaweed endemic to the West Coast of India. The species was identified in 2014 based on molecular phylogenetics using ITS sequences as belonging to the “Paschima” clade.

Monostroma kuroshiense, a green alga in the division Chlorophyta, is a green seaweed endemic to Kuroshio Coast of Japan. This high-value seaweed is called Hitoegusa or Hirohano hitoegusa (ヒロハノヒトエグサ) in Japanese. Previously this algae was known in binomen Monostroma latissimum, but the latest scientific research based on multilocal phylogeny discovered that this is a new species. The algae is named after Kuroshio Current, naming is done by phycologist Felix Bast This algae is commercially cultivated in East Asia and South America for the edible product "hitoegusa-nori" or "hirohano-hitoegusa nori", popular sushi wraps. Monostroma oligosaccharides with degree of polymerization 6 prepared by agarase digestion from Monostroma nitidum polysaccharides have been shown to be an effective prophylactic agent during in vitro and in vivo tests against Japanese encephalitis viral infection. The sulfated oligosaccharides from Monostroma seem to be promising candidates for further development as antiviral agents. The genus Monostroma is the most widely cultivated genus among green seaweeds.

<i>Ulva australis</i> Species of alga

Ulva australis, the southern sea lettuce, is a species of bright green coloured seaweed in the family Ulvaceae that can be found in waters around Australia and was first described by Swedish botanist Johan Erhard Areschoug. It is an edible green algae, although sometimes designated as a seaweed. General characteristics of Ulva australis include a smooth surface, distromatic blades, lobed fronds, and thallus color from dark green to light grass green. It can be either free floating or attached by a single holdfast. Its cells appear to be irregularly arranged, have rounded edges, and have shapes such as rectilinear, square, and pentagonal.

References

  1. 1 2 3 "A green seaweed - Ulva linza" . Retrieved March 23, 2013.
  2. 1 2 LM Granhag , JA Finlay , PR Jonsson , JA Callow & ME Callow (2004) Roughness-dependent Removal of Settled Spores of the Green Alga Ulva (syn. Enteromorpha) Exposed to Hydrodynamic Forces from a Water Jet, Biofouling, 20:2, 117-122, DOI: 10.1080/08927010410001715482
  3. 1 2 "Ulva linza". Sea Weed Industry. Retrieved March 23, 2013.
  4. "Green String Lettuce". Seaweeds of Alaska. Retrieved March 23, 2013.
  5. 1 2 3 4 5 6 Guidone, M., Thornber, C., Wysor, B., & O'Kelly, C. J. (2013). Molecular and morphological diversity of narragansett bay (RI, USA) ulva (ulvales, chlorophyta) populations. Journal of Phycology, 49(5), 979-995. doi:10.1111/jpy.12108
  6. 1 2 Callow, M. E., Callow, J. A., Pickett-Heaps, J. D., & Wetherbee, R. (1997). Primary adhesion of enteromorpha (chlorophyta, ulvales) propagules: Quantitative settlement studies and video microscopy. Journal of Phycology, 33(6), 938-947. doi:10.1111/j.0022-3646.1997.00938.x
  7. Taylor, R., Fletcher, R. L., & Raven, J. A. (2001). Preliminary studies on the growth of selected 'green tide' algae in laboratory culture: Effects of irradiance, temperature, salinity and nutrients on growth rate.Botanica Marina, 44(4), 327-336. doi:10.1515/BOT.2001.042
  8. 1 2 Luo, M. B., Liu, F., & Xu, Z. L. (2012). Growth and nutrient uptake capacity of two co-occurring species, ulva prolifera and ulva linza. Aquatic Botany, 100, 18-24. doi:10.1016/j.aquabot.2012.03.006
  9. 1 2 Finlay, J. A., Callow, M. E., Schultz, M. P., Swain, G. W., & Callow, J. A. (2002). Adhesion strength of settled spores of the green alga enteromorpha. Biofouling, 18(4), 251-256. doi:10.1080/08927010290029010
  10. 6. Finlay, J. A., Callow, M. E., Schultz, M. P., Swain, G. W., & Callow, J. A. (2002). Adhesion strength of settled spores of the green alga enteromorpha. Biofouling, 18(4), 251-256. doi:10.1080/08927010290029010

Further reading