Vaqueros Formation

Last updated
Vaqueros Formation
Stratigraphic range: Late Oligocene-Early Miocene
Vaqueros2.jpg
Outcrop of the Vaqueros Formation in Gaviota State Park, California.
Typesedimentary
Underlies Rincon Formation, Monterey Formation
Overlies Sespe Formation, Kreyenhagen Formation
Thickness0-500+ ft [1]
Lithology
Primary sandstone
Location
RegionCoastal California and the Central Valley
CountryUnited States
Type section
Named forVaquero Canyon, Santa Lucia Mountains
Named byHamlin (1904) [2]

The Vaqueros Formation is a sedimentary geologic unit primarily of Upper Oligocene and Lower Miocene age, which is widespread on the California coast and coastal ranges in approximately the southern half of the state. It is predominantly a medium-grained sandstone unit, deposited in a shallow marine environment. Because of its high porosity and nearness to petroleum source rocks, in many places it is an oil-bearing unit, wherever it has been configured into structural or stratigraphic traps by folding and faulting. Being resistant to erosion, it forms dramatic outcrops in the coastal mountains. Its color ranges from grayish-green to light gray when freshly broken, and it weathers to a light brown or buff color. [3]

Contents

Type locality and deposition environment

Vaqueros Formation sandstone with concretions Vaqueros Sandstone Sanborn County Park.jpg
Vaqueros Formation sandstone with concretions

The type locality of the Vaqueros is from Vaqueros Canyon in the Santa Lucia Mountains, about eight miles southwest of Greenfield. The formation was first described by Homer Hamlin in 1904, as part of a report on the water resources of the Salinas Valley. [4]

The sandstone unit consists of well-sorted grains, averaging medium-size, typically quartz and feldspar with some black flecks, and in form it ranges from cross-bedded to massive and thick-bedded. Occasionally it contains pebbles, especially near its base where it sits on the red non-marine Sespe Formation. Some fossils – including mollusks and barnacles – can be found in the Vaqueros, also near the base of the unit where the depositional environment was nearest shore. [5] [6]

The unit was deposited by runoff from highlands to the east into a shallow, warm marine environment, as the ocean transgressed on the subsiding floodplain containing the Sespe in the late Oligocene age, between 26 and 28 Ma (million years before present) to 24 to 25 Ma. [7] As the land continued to subside, the ocean depth increased with a corresponding drop in grain size in higher strata. The topmost part of the Vaqueros contains interbedded mudstones, silstones, and fine-grained sandstones, representing this shift. [6] The unit above the Vaqueros, the Rincon Formation, consists of deepwater shales. [6]

The Vaqueros weathers to a clayey soil which supports chaparral, and on the southern slopes of the Santa Ynez Mountains in southern Santa Barbara County, its contact with the Rincon Formation is easily visible for it correlates closely to the line where the grassland or coastal sage scrub, nearer the coast, abruptly changes to dense chaparral on the mountainside. [8] [9]

Paleontology

Fossils found in the Vaqueros are mostly near-shore marine organisms, such as mollusks, scallops, and oysters (Turritella sp., Pecten sp., Ostrea sp.) [5] While the molluscan stage is hard to date and ranges from the Miocene epoch, strata from Simi Valley have sampled in the upper Oligocene period. [10]

Mammals

Mammals reported from the San Diego Formation
GenusSpeciesStratigraphic positionNotesImages

Allodelphis

A. woodburnei

Lower

A river dolphin.

"Cetotherium"

"C." furlongi

Upper unit (Early Miocene)

Type specimen missing

As a petroleum-bearing unit

In some places, the Vaqueros has been deformed into anticlinal structures, or pinched out into structural traps, allowing petroleum to become trapped in economically recoverable quantities. Some locations where this has occurred include the Ellwood and Mesa Oil Fields in Santa Barbara County, and the Kettleman North Dome and Coalinga Oil Fields in the Central Valley. [11] When grouped with the underlying Sespe Formation, because of its high porosity and the presence of an impermeable cap in the overlying Rincon Formation, it is the second-most important producing horizon in Southern California. [12] [13]

Notes

  1. Minor, S.A., Kellogg, K.S., Stanley, R.G., Gurrola, L.D., Keller, E.A., and Brandt, T.R., 2009, Geologic Map of the Santa Barbara Coastal Plain Area, Santa Barbara County, California: U.S. Geological Survey Scientific Investigations Map 3001, scale 1:25,000, 1 sheet, pamphlet, 38 p.
  2. Dibblee, Thomas. Geology of the central Santa Ynez Mountains, Santa Barbara County, California. Bulletin 186, California Division of Mines and Geology. San Francisco, 1966.
  3. Dibblee (1966) 40–42
  4. Dibblee (1966) 40
  5. 1 2 Dibblee (1966) 42
  6. 1 2 3 Minor et al., map legend
  7. Gregory A. Miles and Catherine A. Rigsby. "Lithostratigraphy and Depositional Environments of the Vaqueros and Upper Sespe/Alegria Formations, Hondo Field, Santa Barbara Channel, California." SEPM Core Workshop No. 14. San Francisco, June 3, 1990. ISBN   0-918985-84-6 p. 46
  8. Hollister Ranch: Environmental Setting
  9. Dibblee (1966) 41
  10. "MAGNETIC STRATIGRAPHY OF THE OLIGOCENE-MIOCENE VAQUEROS FORMATION AND MOLLUSCAN STAGE, CALIFORNIA". American Association of Petroleum Geologists . gsa.confex.com. April 10, 2001. Retrieved 9 September 2010.
  11. California Oil and Gas Fields, Volumes I, II and III. Vol. I (1998), Vol. II (1992), Vol. III (1982). California Department of Conservation, Division of Oil, Gas, and Geothermal Resources (DOGGR). 1,472 pp.  PDF file available on CD from www.consrv.ca.gov. pp. 290, 532
  12. Keller, Margaret. Ventura Basin Province, U.S. Geological Survey Digital Data Series DDS-30, Release 2, one CD-ROM, 19 p. + supporting maps, figures, and tables. Available here
  13. James M. Galloway. "Santa Barbara-Ventura Basin Province." Archived 2011-01-03 at the Wayback Machine 100.

Related Research Articles

<span class="mw-page-title-main">Transverse Ranges</span> Group of mountain ranges of southern California

The Transverse Ranges are a group of mountain ranges of southern California, in the Pacific Coast Ranges physiographic region in North America. The Transverse Ranges begin at the southern end of the California Coast Ranges and lie within Santa Barbara, Ventura, Los Angeles, San Bernardino, Riverside and Kern counties. The Peninsular Ranges lie to the south. The name Transverse Ranges is due to their east–west orientation, making them transverse to the general northwest–southeast orientation of most of California's coastal mountains.

<span class="mw-page-title-main">Los Angeles Basin</span> Sedimentary basin located along the coast of southern California

The Los Angeles Basin is a sedimentary basin located in Southern California, in a region known as the Peninsular Ranges. The basin is also connected to an anomalous group of east-west trending chains of mountains collectively known as the Transverse Ranges. The present basin is a coastal lowland area, whose floor is marked by elongate low ridges and groups of hills that is located on the edge of the Pacific Plate. The Los Angeles Basin, along with the Santa Barbara Channel, the Ventura Basin, the San Fernando Valley, and the San Gabriel Basin, lies within the greater southern California region.

<span class="mw-page-title-main">Santa Ynez Mountains</span> Mountain range of the Transverse Ranges in California, United States

The Santa Ynez Mountains are a portion of the Transverse Ranges, part of the Pacific Coast Ranges of the west coast of North America. It is the westernmost range in the Transverse Ranges.

<span class="mw-page-title-main">Dick Smith Wilderness</span> Protected wilderness area in California, United States

The Dick Smith Wilderness is a wilderness area in the mountains of eastern Santa Barbara County, California, United States, with a portion in Ventura County. It is completely contained within the Los Padres National Forest, and is northeast of the city of Santa Barbara and north of the city of Ojai. It is most easily accessible from two trailheads off State Route 33, which runs north from Ojai. It is adjacent to the large San Rafael Wilderness on the west and the Matilija Wilderness on the south. Across Highway 33 to the east, and also in the Los Padres National Forest, is the large Sespe Wilderness.

<span class="mw-page-title-main">South Cuyama Oil Field</span>

The South Cuyama Oil Field is a large oil and gas field in the Cuyama Valley and the adjacent northern foothills of the Sierra Madre Mountains in northeastern Santa Barbara County, California. Discovered in 1949, and with a cumulative production of around 225 million barrels (35,800,000 m3) of oil, it ranks 27th in size in the state, but is believed to retain only approximately two percent of its original oil, according to the official estimates of the California Department of Oil, Gas, and Geothermal Resources (DOGGR). Of the top forty onshore oil fields in California, it is the most recent to be discovered, but by the end of 2008 only 87 wells remained in production.

<span class="mw-page-title-main">Simi Valley (valley)</span> Valley in Southern California

Simi Valley is a synclinal valley in Southern California in the United States. It is an enclosed or hidden valley surrounded by mountains and hills. It is connected to the San Fernando Valley to the east by the Santa Susana Pass and the 118 freeway, and in the west the narrows of the Arroyo Simi and the Reagan Freeway connect to Moorpark and Ventura, California. The relatively flat bottom of the valley contains soils formed from shales, sandstones, and conglomerates eroded from the surrounding hills of the Santa Susana Mountains to the north, which separate Simi Valley from the Santa Clara River Valley, and the Simi Hills.

<span class="mw-page-title-main">Summerland Oil Field</span>

The Summerland Oil Field is an inactive oil field in Santa Barbara County, California, about four miles (6 km) east of the city of Santa Barbara, within and next to the unincorporated community of Summerland. First developed in the 1890s, and richly productive in the early 20th century, the Summerland Oil Field was the location of the world's first offshore oil wells, drilled from piers in 1896. This field, which was the first significant field to be developed in Santa Barbara County, produced 3.18 million of barrels of oil during its 50-year lifespan, finally being abandoned in 1939-40. Another nearby oil field entirely offshore, discovered in 1957 and named the Summerland Offshore Oil Field, produced from two drilling platforms in the Santa Barbara Channel before being abandoned in 1996.

<span class="mw-page-title-main">Rincon Oil Field</span> Large oil field on the central coast of southern California

The Rincon Oil Field is a large oil field on the coast of southern California, about 10 miles (16 km) northwest of the city of Ventura, and about 20 miles (32 km) east-southeast of the city of Santa Barbara. It is the westernmost onshore field in a series of three fields which follow the Ventura Anticline, an east-west trending feature paralleling the Transverse Ranges. Discovered in 1927, the oil field is ranked 36th in California by size of recoverable oil reserves, and while mostly depleted – now having, by California Department of Conservation estimates, only about 2.5% of its original oil – it remains productive, with 77 wells active at the beginning of 2008. Oil produced in the field flows through the M-143 pipeline, which parallels U.S. Highway 101 southeast to the Ventura Pump Station, at which point it joins a Tosco pipeline which carries it to Los Angeles area refineries. As of 2009, the primary operators of the field were Occidental Petroleum for the onshore portion, and Greka Energy for the offshore portion. The offshore part of the field is operated mainly from Rincon Island.

<span class="mw-page-title-main">Mesa Oil Field</span>

The Mesa Oil Field is an abandoned oil field entirely within the city limits of Santa Barbara, California, in the United States. Discovered in 1929, it was quickly developed and quickly declined, as it proved to be but a relatively small accumulation of oil in a single geologic formation. While the field was active in the 1930s, residential development in most of the Mesa neighborhood of Santa Barbara came to a halt. The field included two major productive areas with a total surface extent of only 210 acres (0.85 km2), and produced 3,700,000 barrels (590,000 m3) of oil during its brief lifetime.

<span class="mw-page-title-main">Sespe Formation</span>

The Sespe Formation is a widespread fossiliferous sedimentary geologic unit in southern and south central California in the United States. It is of nonmarine origin, consisting predominantly of sandstones and conglomerates laid down in a riverine, shoreline, and floodplain environment between the upper Eocene Epoch through the lower Miocene. It is often distinctive in appearance, with its sandstones weathering to reddish-brown, maroon, pinkish-gray, tan, and green. Since many of its sandstones are more resistant to erosion than many other regional sedimentary units it often forms dramatic outcrops and ridgelines in many local mountain ranges.

<span class="mw-page-title-main">Sisquoc Formation</span>

The Sisquoc Formation is a sedimentary geologic unit widespread in Southern California, both on the coast and in mountains near the coast. Overlying the Monterey Formation, it is of upper Miocene and lower Pliocene age. The formation consists of claystone, mudstone, siltstone, shale, diatomite, and conglomerates, with considerable regional variation, and was deposited in a moderately deep marine environment at a depth of approximately 500–5,000 feet (150–1,520 m). Since some of its diatomites, along with those of the underlying Monterey Formation, are of unusual purity and extent, they can be mined as diatomaceous earth. France-based Imerys operates a mine in the Sisquoc and Monterey Formations in the hills south of Lompoc, California, the largest such operation in the world.

<span class="mw-page-title-main">Rincon Formation</span>

The Rincon Formation is a sedimentary geologic unit of Lower Miocene age, abundant in the coastal portions of southern Santa Barbara County, California eastward into Ventura County. Consisting of massive to poorly bedded shale, mudstone, and siltstone, it weathers readily to a rounded hilly topography with clayey, loamy soils in which landslides and slumps are frequent. It is recognizable on the south slopes of the Santa Ynez Mountains as the band at the base of the mountains which supports grasses rather than chaparral. Outcrops of the unit are infrequent, with the best exposures on the coastal bluffs near Naples, in the San Marcos Foothills, at the Tajiguas Landfill, and in road cuts. The geologic unit is notorious as a source of radon gas related to its high uranium content, released by radioactive decay.

<span class="mw-page-title-main">Cozy Dell Shale</span> Eocene geologic formation in California

The Cozy Dell Shale is a geologic formation of middle Eocene age that crops out in the Santa Ynez Mountains and Topatopa Mountains of California, extending from north of Fillmore in Ventura County westward to near Point Arguello, north of Santa Barbara. Because the Cozy Dell easily weathers to a clay-rich soil, it crops out infrequently and generally forms dense stands of chaparral in saddles between peaks and ridges of the more resistant Matilija and Coldwater formations.

<span class="mw-page-title-main">Coldwater Sandstone</span> Eocene geologic unit in Southern California

The Coldwater Sandstone is a sedimentary geologic unit of Eocene age found in Southern California, primarily in and south of the Santa Ynez Mountains of Santa Barbara County, and east into Ventura County. It consists primarily of massive arkosic sandstone with some siltstone and shale. Being exceptionally resistant to erosion, outcrops of the Coldwater form some of the most dramatic terrain on the south slope of the Santa Ynez Mountains, with immense white sculpted slabs forming peaks, hogback ridges, and sheer cliff faces.

<span class="mw-page-title-main">Matilija Sandstone</span>

The Matilija Sandstone is a sedimentary geologic unit of Eocene epoch in the Paleogene Period, found in Santa Barbara and Ventura Counties in Southern California.

<span class="mw-page-title-main">Juncal Formation</span>

The Juncal Formation is a prominent sedimentary geologic unit of Eocene age found in and north of the Santa Ynez Mountain range in southern and central Santa Barbara County and central Ventura County, California. An enormously thick series of sediments deposited over millions of years in environments ranging from nearshore to deep water, it makes up much of the crest of the Santa Ynez range north of Montecito, as well as portions of the San Rafael Mountains in the interior of the county. Its softer shales weather to saddles and swales, supporting a dense growth of brush, and its sandstones form prominent outcrops.

<span class="mw-page-title-main">Jalama Formation</span> Sedimentary rock formation in California, United States

The Jalama Formation is a sedimentary rock formation widespread in southern Santa Barbara County and northern Ventura County, southern California. Of the Late Cretaceous epoch, the unit consists predominantly of clay shale with some beds of sandstone.

<span class="mw-page-title-main">Espada Formation</span>

The Espada Formation is a sedimentary rock formation widespread in Santa Barbara County, California. Of late Jurassic to Cretaceous age, the unit consists primarily of shale with some interbedded thin layers of sandstone, conglomerate, and limestone.

<span class="mw-page-title-main">La Goleta Gas Field</span> Natural gas field in Santa Barbara County, California, United States

The La Goleta Gas Field is a natural gas field in unincorporated Santa Barbara County, California, adjacent to the city of Goleta. Discovered in 1929, and first put into production in 1932, it has been in continuous use ever since, producing approximately 12 billion cubic feet of gas. With production declining, the field was converted into a gas storage reservoir in 1941. As of 2016 it remains one of the four gas storage facilities maintained by Southern California Gas Company (SoCalGas), a division of Sempra Energy, with the others being Aliso Canyon, Honor Rancho and Playa del Rey. It is the oldest storage facility of the four and the third largest, with a maximum capacity of 21.5 billion cubic feet. The storage facilities are necessary to balance load for the over ten million customers of SoCalGas: during summer months, when gas usage is at a minimum, gas is pumped into the reservoirs; and in the winter when usage is high, gas is withdrawn. The La Goleta field serves the northern portion of SoCalGas's geographic range.

The geology of California is highly complex, with numerous mountain ranges, substantial faulting and tectonic activity, rich natural resources and a history of both ancient and comparatively recent intense geological activity. The area formed as a series of small island arcs, deep-ocean sediments and mafic oceanic crust accreted to the western edge of North America, producing a series of deep basins and high mountain ranges.

References