Variable-mass system

Last updated
Rockets, which lose significant amounts of mass as fuel during flight, are an example of a variable-mass system. Soyuz TMA-18 launching.jpg
Rockets, which lose significant amounts of mass as fuel during flight, are an example of a variable-mass system.

In mechanics, a variable-mass system is a collection of matter whose mass varies with time. It can be confusing to try to apply Newton's second law of motion directly to such a system. [1] [2] Instead, the time dependence of the mass m can be calculated by rearranging Newton's second law and adding a term to account for the momentum carried by mass entering or leaving the system. The general equation of variable-mass motion is written as

Contents

where Fext is the net external force on the body, vrel is the relative velocity of the escaping or incoming mass with respect to the center of mass of the body, and v is the velocity of the body. [3] In astrodynamics, which deals with the mechanics of rockets, the term vrel is often called the effective exhaust velocity and denoted ve. [4]

Derivation

There are different derivations for the variable-mass system motion equation, depending on whether the mass is entering or leaving a body (in other words, whether the moving body's mass is increasing or decreasing, respectively). To simplify calculations, all bodies are considered as particles. It is also assumed that the mass is unable to apply external forces on the body outside of accretion/ablation events.

Mass accretion

At instant 1, a mass dm with velocity u is about to collide with the main body of mass m and velocity v. After a time dt, at instant 2, both particles move as one body with velocity v + dv. Variable-mass system derivation.svg
At instant 1, a mass dm with velocity u is about to collide with the main body of mass m and velocity v. After a time dt, at instant 2, both particles move as one body with velocity v + dv.

The following derivation is for a body that is gaining mass (accretion). A body of time-varying mass m moves at a velocity v at an initial time t. In the same instant, a particle of mass dm moves with velocity u with respect to ground. The initial momentum can be written as [5]

Now at a time t + dt, let both the main body and the particle accrete into a body of velocity v + dv. Thus the new momentum of the system can be written as

Since dmdv is the product of two small values, it can be ignored, meaning during dt the momentum of the system varies for

Therefore, by Newton's second law

Noting that u - v is the velocity of dm relative to m, symbolized as vrel, this final equation can be arranged as [6]

Mass ablation/ejection

In a system where mass is being ejected or ablated from a main body, the derivation is slightly different. At time t, let a mass m travel at a velocity v, meaning the initial momentum of the system is

Assuming u to be the velocity of the ablated mass dm with respect to the ground, at a time t + dt the momentum of the system becomes

where u is the velocity of the ejected mass with respect to ground, and is negative because the ablated mass moves in opposite direction to the mass. Thus during dt the momentum of the system varies for

Relative velocity vrel of the ablated mass with respect to the mass m is written as

Therefore, change in momentum can be written as

Therefore, by Newton's second law

Therefore, the final equation can be arranged as

Forms

When released, this rocket balloon ejects a significant amount of its mass as air, causing a large acceleration. Inflated rocket balloon.jpg
When released, this rocket balloon ejects a significant amount of its mass as air, causing a large acceleration.

By the definition of acceleration, a = dv/dt, so the variable-mass system motion equation can be written as

In bodies that are not treated as particles a must be replaced by acm, the acceleration of the center of mass of the system, meaning

Often the force due to thrust is defined as so that

This form shows that a body can have acceleration due to thrust even if no external forces act on it (Fext = 0). Note finally that if one lets Fnet be the sum of Fext and Fthrust then the equation regains the usual form of Newton's second law:

Ideal rocket equation

Rocket mass ratios versus final velocity calculated from the rocket equation Tsiolkovsky rocket equation.svg
Rocket mass ratios versus final velocity calculated from the rocket equation

The ideal rocket equation, or the Tsiolkovsky rocket equation, can be used to study the motion of vehicles that behave like a rocket (where a body accelerates itself by ejecting part of its mass, a propellant, with high speed). It can be derived from the general equation of motion for variable-mass systems as follows: when no external forces act on a body (Fext = 0) the variable-mass system motion equation reduces to [2]

If the velocity of the ejected propellant, vrel, is assumed have the opposite direction as the rocket's acceleration, dv/dt, the scalar equivalent of this equation can be written as

from which dt can be canceled out to give

Integration by separation of variables gives

By rearranging and letting Δv = v1 - v0, one arrives at the standard form of the ideal rocket equation:

where m0 is the initial total mass, including propellant, m1 is the final total mass, vrel is the effective exhaust velocity (often denoted as ve), and Δv is the maximum change of speed of the vehicle (when no external forces are acting).

Related Research Articles

<span class="mw-page-title-main">Acceleration</span> Rate of change of velocity

In mechanics, acceleration is the rate of change of the velocity of an object with respect to time. Accelerations are vector quantities. The orientation of an object's acceleration is given by the orientation of the net force acting on that object. The magnitude of an object's acceleration, as described by Newton's Second Law, is the combined effect of two causes:

<span class="mw-page-title-main">Angular momentum</span> Conserved physical quantity; rotational analogue of linear momentum

In physics, angular momentum is the rotational analog of linear momentum. It is an important physical quantity because it is a conserved quantity – the total angular momentum of a closed system remains constant. Angular momentum has both a direction and a magnitude, and both are conserved. Bicycles and motorcycles, flying discs, rifled bullets, and gyroscopes owe their useful properties to conservation of angular momentum. Conservation of angular momentum is also why hurricanes form spirals and neutron stars have high rotational rates. In general, conservation limits the possible motion of a system, but it does not uniquely determine it.

<span class="mw-page-title-main">Momentum</span> Property of a mass in motion

In Newtonian mechanics, momentum is the product of the mass and velocity of an object. It is a vector quantity, possessing a magnitude and a direction. If m is an object's mass and v is its velocity, then the object's momentum p is :

<span class="mw-page-title-main">Torque</span> Turning force around an axis

In physics and mechanics, torque is the rotational equivalent of linear force. It is also referred to as the moment of force. It represents the capability of a force to produce change in the rotational motion of the body. The concept originated with the studies by Archimedes of the usage of levers, which is reflected in his famous quote: "Give me a lever and a place to stand and I will move the Earth". Just as a linear force is a push or a pull, a torque can be thought of as a twist to an object around a specific axis. Torque is defined as the product of the magnitude of the perpendicular component of the force and the distance of the line of action of a force from the point around which it is being determined. The law of conservation of energy can also be used to understand torque. The symbol for torque is typically , the lowercase Greek letter tau. When being referred to as moment of force, it is commonly denoted by M.

<span class="mw-page-title-main">Navier–Stokes equations</span> Equations describing the motion of viscous fluid substances

In physics, the Navier–Stokes equations are partial differential equations which describe the motion of viscous fluid substances, named after French engineer and physicist Claude-Louis Navier and Anglo-Irish physicist and mathematician George Gabriel Stokes. They were developed over several decades of progressively building the theories, from 1822 (Navier) to 1842-1850 (Stokes).

<span class="mw-page-title-main">Equations of motion</span> Equations that describe the behavior of a physical system

In physics, equations of motion are equations that describe the behavior of a physical system in terms of its motion as a function of time. More specifically, the equations of motion describe the behavior of a physical system as a set of mathematical functions in terms of dynamic variables. These variables are usually spatial coordinates and time, but may include momentum components. The most general choice are generalized coordinates which can be any convenient variables characteristic of the physical system. The functions are defined in a Euclidean space in classical mechanics, but are replaced by curved spaces in relativity. If the dynamics of a system is known, the equations are the solutions for the differential equations describing the motion of the dynamics.

In physics, the reduced mass is the "effective" inertial mass appearing in the two-body problem of Newtonian mechanics. It is a quantity which allows the two-body problem to be solved as if it were a one-body problem. Note, however, that the mass determining the gravitational force is not reduced. In the computation, one mass can be replaced with the reduced mass, if this is compensated by replacing the other mass with the sum of both masses. The reduced mass is frequently denoted by (mu), although the standard gravitational parameter is also denoted by . It has the dimensions of mass, and SI unit kg.

In physics, a Langevin equation is a stochastic differential equation describing how a system evolves when subjected to a combination of deterministic and fluctuating ("random") forces. The dependent variables in a Langevin equation typically are collective (macroscopic) variables changing only slowly in comparison to the other (microscopic) variables of the system. The fast (microscopic) variables are responsible for the stochastic nature of the Langevin equation. One application is to Brownian motion, which models the fluctuating motion of a small particle in a fluid.

<span class="mw-page-title-main">Hamiltonian mechanics</span> Formulation of classical mechanics using momenta

Hamiltonian mechanics emerged in 1833 as a reformulation of Lagrangian mechanics. Introduced by Sir William Rowan Hamilton, Hamiltonian mechanics replaces (generalized) velocities used in Lagrangian mechanics with (generalized) momenta. Both theories provide interpretations of classical mechanics and describe the same physical phenomena.

<span class="mw-page-title-main">Two-body problem</span> Motion problem in classical mechanics

In classical mechanics, the two-body problem is to predict the motion of two massive objects which are abstractly viewed as point particles. The problem assumes that the two objects interact only with one another; the only force affecting each object arises from the other one, and all other objects are ignored.

In continuum mechanics, the Froude number is a dimensionless number defined as the ratio of the flow inertia to the external field. The Froude number is based on the speed–length ratio which he defined as:

<span class="mw-page-title-main">Euler equations (fluid dynamics)</span> Set of quasilinear hyperbolic equations governing adiabatic and inviscid flow

In fluid dynamics, the Euler equations are a set of quasilinear partial differential equations governing adiabatic and inviscid flow. They are named after Leonhard Euler. In particular, they correspond to the Navier–Stokes equations with zero viscosity and zero thermal conductivity.

In celestial mechanics, the specific relative angular momentum of a body is the angular momentum of that body divided by its mass. In the case of two orbiting bodies it is the vector product of their relative position and relative linear momentum, divided by the mass of the body in question.

The Vlasov equation is a differential equation describing time evolution of the distribution function of plasma consisting of charged particles with long-range interaction, e.g. Coulomb. The equation was first suggested for description of plasma by Anatoly Vlasov in 1938 and later discussed by him in detail in a monograph.

<span class="mw-page-title-main">Rotation around a fixed axis</span> Type of motion

Rotation around a fixed axis is a special case of rotational motion. The fixed-axis hypothesis excludes the possibility of an axis changing its orientation and cannot describe such phenomena as wobbling or precession. According to Euler's rotation theorem, simultaneous rotation along a number of stationary axes at the same time is impossible; if two rotations are forced at the same time, a new axis of rotation will appear.

The Cauchy momentum equation is a vector partial differential equation put forth by Cauchy that describes the non-relativistic momentum transport in any continuum.

In classical mechanics, Euler's laws of motion are equations of motion which extend Newton's laws of motion for point particle to rigid body motion. They were formulated by Leonhard Euler about 50 years after Isaac Newton formulated his laws.

<span class="mw-page-title-main">Lagrangian mechanics</span> Formulation of classical mechanics

In physics, Lagrangian mechanics is a formulation of classical mechanics founded on the stationary-action principle. It was introduced by the Italian-French mathematician and astronomer Joseph-Louis Lagrange in his 1788 work, Mécanique analytique.

In classical mechanics, the central-force problem is to determine the motion of a particle in a single central potential field. A central force is a force that points from the particle directly towards a fixed point in space, the center, and whose magnitude only depends on the distance of the object to the center. In a few important cases, the problem can be solved analytically, i.e., in terms of well-studied functions such as trigonometric functions.

Blade element momentum theory is a theory that combines both blade element theory and momentum theory. It is used to calculate the local forces on a propeller or wind-turbine blade. Blade element theory is combined with momentum theory to alleviate some of the difficulties in calculating the induced velocities at the rotor.

References

  1. Kleppner, D.; Kolenkow, R. J. (1978) [1973]. An Introduction to Mechanics . London: McGraw-Hill. pp.  133–139. ISBN   0-07-035048-5.
  2. 1 2 Basavaraju, G; Ghosh, Dipin (1985-02-01). Mechanics and Thermodynamics. Tata McGraw-Hill. pp. 162–165. ISBN   978-0-07-451537-2.
  3. Plastino, Angel R.; Muzzio, Juan C. (1992). "On the use and abuse of Newton's second law for variable mass problems". Celestial Mechanics and Dynamical Astronomy. Netherlands: Kluwer Academic Publishers. 53 (3): 227–232. Bibcode:1992CeMDA..53..227P. doi:10.1007/BF00052611. ISSN   0923-2958 . Retrieved 2011-12-30.
  4. Benson, Tom. "Ideal Rocket Equation". NASA. Archived from the original on 11 October 2007. Retrieved 30 December 2011.
  5. Cveticanin, L (1998-10-21). Dynamics of Machines with Variable Mass (1 ed.). CRC Press. pp. 15–20. ISBN   978-90-5699-096-1.
  6. Giancoli, Douglas C. (2008). Physics for Scientists & Engineers. Vol. 2 (4, illustrated ed.). Pearson Education. pp. 236–238. ISBN   978-0-13-227359-6.