The Weibull modulus is a dimensionless parameter of the Weibull distribution. It represents the width of a probability density function (PDF) in which a higher modulus is a characteristic of a narrower distribution of values. Use case examples include biological and brittle material failure analysis, where modulus is used to describe the variability of failure strength for materials.
The Weibull distribution, represented as a cumulative distribution function (CDF), is defined by:
in which m is the Weibull modulus. [1] is a parameter found during the fit of data to the Weibull distribution and represents an input value for which ~67% of the data is encompassed. As m increases, the CDF distribution more closely resembles a step function at , which correlates with a sharper peak in the probability density function (PDF) defined by:
Failure analysis often uses this distribution, [2] as a CDF of the probability of failure F of a sample, as a function of applied stress σ, in the form:
Failure stress of the sample, σ, is substituted for the property in the above equation. The initial property is assumed to be 0, an unstressed, equilibrium state of the material.
In the plotted figure of the Weibull CDF, it is worth noting that the plotted functions all intersect at a stress value of 50 MPa, the characteristic strength for the distributions, even though the value of the Weibull moduli vary. It is also worth noting in the plotted figure of the Weibull PDF that a higher Weibull modulus results in a steeper slope within the plot.
The Weibull distribution can also be multi-modal, in which there would be multiple reported values and multiple reported moduli, m. The CDF for a bimodal Weibull distribution has the following form, [3] when applied to materials failure analysis:
This represents a material which fails by two different modes. In this equation m1 is the modulus for the first mode, and m2 is the modulus for the second mode. Φ is the fraction of the sample set which fail by the first mode. The corresponding PDF is defined by:
Examples of a bimodal Weibull PDF and CDF are plotted in the figures of this article with values of the characteristic strength being 40 and 120 MPa, the Weibull moduli being 4 and 10, and the value of Φ is 0.5, corresponding to 50% of the specimens failing by each failure mode.
The complement of the cumulative Weibull distribution function can be expressed as:
Where P corresponds to the probability of survival of a specimen for a given stress value. Thus, it follows that:
where m is the Weibull modulus. If the probability is plotted vs the stress, we find that the graph is sigmoidal, as shown in the figure above. Taking advantage of the fact that the exponential is the base of the natural logarithm, the above equation can be rearranged to:
Which, using the properties of logarithms, can also be expressed as:
When the left side of this equation is plotted as a function of the natural logarithm of stress, a linear plot can be created which has a slope of the Weibull modulus, m, and an x-intercept of .
Looking at the plotted linearization of the CDFs from above it can be seen that all of the lines intersect the x-axis at the same point because all of the functions have the same value of the characteristic strength. The slopes vary because of the differing values of the Weibull moduli.
Standards organizations have created multiple standards for measuring and reporting values of Weibull parameters, along with other statistical analyses of strength data:
When applying a Weibull distribution to a set of data the data points must first be put in ranked order. For the use case of failure analysis specimens' failure strengths are ranked in ascending order, i.e. from lowest to greatest strength. A probability of failure is then assigned to each failure strength measured, ASTM C1239-13 [4] uses the following formula:
where is the specimen number as ranked and is the total number of specimens in the sample. From there can be plotted against failure strength to obtain a Weibull CDF. The Weibull parameters, modulus and characteristic strength, can be obtained from fitting or using the linearization method detailed above.
Weibull statistics are often used for ceramics and other brittle materials. [8] [9] They have also been applied to other fields as well such as meteorology where wind speeds are often described using Weibull statistics. [10] [11] [12]
For ceramics and other brittle materials, the maximum stress that a sample can be measured to withstand before failure may vary from specimen to specimen, even under identical testing conditions. This is related to the distribution of physical flaws present in the surface or body of the brittle specimen, since brittle failure processes originate at these weak points. Much work has been done to describe brittle failure with the field of linear elastic fracture mechanics and specifically with the development of the ideas of the stress intensity factor and Griffith Criterion. When flaws are consistent and evenly distributed, samples will behave more uniformly than when flaws are clustered inconsistently. This must be taken into account when describing the strength of the material, so strength is best represented as a distribution of values rather than as one specific value.
Consider strength measurements made on many small samples of a brittle ceramic material. If the measurements show little variation from sample to sample, the calculated Weibull modulus will be high, and a single strength value would serve as a good description of the sample-to-sample performance. It may be concluded that its physical flaws, whether inherent to the material itself or resulting from the manufacturing process, are distributed uniformly throughout the material. If the measurements show high variation, the calculated Weibull modulus will be low; this reveals that flaws are clustered inconsistently, and the measured strength will be generally weak and variable. Products made from components of low Weibull modulus will exhibit low reliability and their strengths will be broadly distributed. With careful manufacturing processes Weibull moduli of up to 98 have been seen for glass fibers tested in tension. [13]
A table is provided with the Weibull moduli for several common materials. However, it is important to note that the Weibull modulus is a fitting parameter from strength data, and therefore the reported value may vary from source to source. It also is specific to the sample preparation and testing method, and subject to change if the analysis or manufacturing process changes.
Material | Weibull Modulus |
---|---|
Silicon Nitride | 20 [9] |
Silicon Carbide | 18 [9] |
Aluminum Nitride | 10 [9] |
Aluminum Oxide (98%) | 10 [9] |
Aluminum Oxide (99%) | 10 [9] |
Zirconia Toughened Alumina (ZTA) | 13 [9] |
Boron Carbide | 12 [9] |
Titanium Diboride | 11 [9] |
Zirconia | 15 [9] |
Studies examining organic brittle materials highlight the consistency and variability of the Weibull modulus within naturally occurring ceramics such as human dentin and abalone nacre. Research on human dentin [14] samples indicates that the Weibull modulus remains stable across different depths or locations within the tooth, with an average value of approximately 4.5 and a range between 3 and 6. Variations in the modulus suggest differences in flaw populations between individual teeth, thought to be caused by random defects introduced during specimen preparation. Speculation exists regarding a potential decrease in the Weibull modulus with age due to changes in flaw distribution and stress sensitivity. Failure in dentin typically initiates at these flaws, which can be intrinsic or extrinsic in origin, arising from factors such as cavity preparation, wear, damage, or cyclic loading.
Studies on the abalone shell illustrate its unique structural adaptations, sacrificing tensile strength perpendicular to its structure to enhance strength parallel to the tile arrangement. The Weibull modulus of abalone nacre samples [15] is determined to be 1.8, indicating a moderate degree of variability in strength among specimens.
The Weibull modulus of quasi-brittle materials correlates with the decline in the slope of the energy barrier spectrum, as established in fracture mechanics models. This relationship allows for the determination of both the fracture energy barrier spectrum decline slope and the Weibull modulus, while keeping factors like crack interaction and defect-induced degradation in consideration. Temperature dependence and variations due to crack interactions or stress field interactions are observed in the Weibull modulus of quasi-brittle materials. Damage accumulation leads to a rapid decrease in the Weibull modulus, resulting in a right-shifted distribution with a smaller Weibull modulus as damage increases. [16]
Weibull analysis is also used in quality control and "life analysis" [17] for products. A higher Weibull modulus allows for companies to more confidently predict the life of their product for use in determining warranty periods.
A further method to determine the strength of brittle materials has been described by the Wikibook contribution Weakest link determination by use of three parameter Weibull statistics.
In probability theory and statistics, a normal distribution or Gaussian distribution is a type of continuous probability distribution for a real-valued random variable. The general form of its probability density function is The parameter is the mean or expectation of the distribution, while the parameter is the variance. The standard deviation of the distribution is (sigma). A random variable with a Gaussian distribution is said to be normally distributed, and is called a normal deviate.
The Pareto distribution, named after the Italian civil engineer, economist, and sociologist Vilfredo Pareto, is a power-law probability distribution that is used in description of social, quality control, scientific, geophysical, actuarial, and many other types of observable phenomena; the principle originally applied to describing the distribution of wealth in a society, fitting the trend that a large portion of wealth is held by a small fraction of the population. The Pareto principle or "80-20 rule" stating that 80% of outcomes are due to 20% of causes was named in honour of Pareto, but the concepts are distinct, and only Pareto distributions with shape value of log45 ≈ 1.16 precisely reflect it. Empirical observation has shown that this 80-20 distribution fits a wide range of cases, including natural phenomena and human activities.
In probability theory, a log-normal (or lognormal) distribution is a continuous probability distribution of a random variable whose logarithm is normally distributed. Thus, if the random variable X is log-normally distributed, then Y = ln(X) has a normal distribution. Equivalently, if Y has a normal distribution, then the exponential function of Y, X = exp(Y), has a log-normal distribution. A random variable which is log-normally distributed takes only positive real values. It is a convenient and useful model for measurements in exact and engineering sciences, as well as medicine, economics and other topics (e.g., energies, concentrations, lengths, prices of financial instruments, and other metrics).
In probability theory and statistics, the Weibull distribution is a continuous probability distribution. It models a broad range of random variables, largely in the nature of a time to failure or time between events. Examples are maximum one-day rainfalls and the time a user spends on a web page.
In engineering, deformation may be elastic or plastic. If the deformation is negligible, the object is said to be rigid.
In mathematics, a Gaussian function, often simply referred to as a Gaussian, is a function of the base form and with parametric extension for arbitrary real constants a, b and non-zero c. It is named after the mathematician Carl Friedrich Gauss. The graph of a Gaussian is a characteristic symmetric "bell curve" shape. The parameter a is the height of the curve's peak, b is the position of the center of the peak, and c controls the width of the "bell".
Fracture is the appearance of a crack or complete separation of an object or material into two or more pieces under the action of stress. The fracture of a solid usually occurs due to the development of certain displacement discontinuity surfaces within the solid. If a displacement develops perpendicular to the surface, it is called a normal tensile crack or simply a crack; if a displacement develops tangentially, it is called a shear crack, slip band, or dislocation.
In mechanics, compressive strength is the capacity of a material or structure to withstand loads tending to reduce size (compression). It is opposed to tensile strength which withstands loads tending to elongate, resisting tension. In the study of strength of materials, compressive strength, tensile strength, and shear strength can be analyzed independently.
Thermal shock is a phenomenon characterized by a rapid change in temperature that results in a transient mechanical load on an object. The load is caused by the differential expansion of different parts of the object due to the temperature change. This differential expansion can be understood in terms of strain, rather than stress. When the strain exceeds the tensile strength of the material, it can cause cracks to form, and eventually lead to structural failure.
In probability theory and statistics, the generalized extreme value (GEV) distribution is a family of continuous probability distributions developed within extreme value theory to combine the Gumbel, Fréchet and Weibull families also known as type I, II and III extreme value distributions. By the extreme value theorem the GEV distribution is the only possible limit distribution of properly normalized maxima of a sequence of independent and identically distributed random variables. that a limit distribution needs to exist, which requires regularity conditions on the tail of the distribution. Despite this, the GEV distribution is often used as an approximation to model the maxima of long (finite) sequences of random variables.
Estimation theory is a branch of statistics that deals with estimating the values of parameters based on measured empirical data that has a random component. The parameters describe an underlying physical setting in such a way that their value affects the distribution of the measured data. An estimator attempts to approximate the unknown parameters using the measurements. In estimation theory, two approaches are generally considered:
The Anderson–Darling test is a statistical test of whether a given sample of data is drawn from a given probability distribution. In its basic form, the test assumes that there are no parameters to be estimated in the distribution being tested, in which case the test and its set of critical values is distribution-free. However, the test is most often used in contexts where a family of distributions is being tested, in which case the parameters of that family need to be estimated and account must be taken of this in adjusting either the test-statistic or its critical values. When applied to testing whether a normal distribution adequately describes a set of data, it is one of the most powerful statistical tools for detecting most departures from normality. K-sample Anderson–Darling tests are available for testing whether several collections of observations can be modelled as coming from a single population, where the distribution function does not have to be specified.
Flexural strength, also known as modulus of rupture, or bend strength, or transverse rupture strength is a material property, defined as the stress in a material just before it yields in a flexure test. The transverse bending test is most frequently employed, in which a specimen having either a circular or rectangular cross-section is bent until fracture or yielding using a three-point flexural test technique. The flexural strength represents the highest stress experienced within the material at its moment of yield. It is measured in terms of stress, here given the symbol .
Expected shortfall (ES) is a risk measure—a concept used in the field of financial risk measurement to evaluate the market risk or credit risk of a portfolio. The "expected shortfall at q% level" is the expected return on the portfolio in the worst of cases. ES is an alternative to value at risk that is more sensitive to the shape of the tail of the loss distribution.
The Nakagami distribution or the Nakagami-m distribution is a probability distribution related to the gamma distribution. It is used to model physical phenomena, such as those found in medical ultrasound imaging, communications engineering, meteorology, hydrology, multimedia, and seismology.
In financial mathematics, tail value at risk (TVaR), also known as tail conditional expectation (TCE) or conditional tail expectation (CTE), is a risk measure associated with the more general value at risk. It quantifies the expected value of the loss given that an event outside a given probability level has occurred.
In probability, statistics, economics, and actuarial science, the Benini distribution is a continuous probability distribution that is a statistical size distribution often applied to model incomes, severity of claims or losses in actuarial applications, and other economic data. Its tail behavior decays faster than a power law, but not as fast as an exponential. This distribution was introduced by Rodolfo Benini in 1905. Somewhat later than Benini's original work, the distribution has been independently discovered or discussed by a number of authors.
In probability theory, a log-Cauchy distribution is a probability distribution of a random variable whose logarithm is distributed in accordance with a Cauchy distribution. If X is a random variable with a Cauchy distribution, then Y = exp(X) has a log-Cauchy distribution; likewise, if Y has a log-Cauchy distribution, then X = log(Y) has a Cauchy distribution.
According to the classical theories of elastic or plastic structures made from a material with non-random strength (ft), the nominal strength (σN) of a structure is independent of the structure size (D) when geometrically similar structures are considered. Any deviation from this property is called the size effect. For example, conventional strength of materials predicts that a large beam and a tiny beam will fail at the same stress if they are made of the same material. In the real world, because of size effects, a larger beam will fail at a lower stress than a smaller beam.
The four-point flexural test provides values for the modulus of elasticity in bending , flexural stress , flexural strain and the flexural stress-strain response of the material. This test is very similar to the three-point bending flexural test. The major difference being that with the addition of a fourth bearing the portion of the beam between the two loading points is put under maximum stress, as opposed to only the material right under the central bearing in the case of three-point bending.