Weibull modulus

Last updated

The Weibull modulus is a dimensionless parameter of the Weibull distribution. It represents the width of a probability density function (PDF) in which a higher modulus correlates with a sharper peak. Use case examples include biological and brittle material failure analysis, where modulus is reported after preforming a fit to the Weibull distribution.

Contents

Definition

The Weibull distribution, represented as a cumulative distribution function (CDF), is defined by:

CDF of Weibull distribution for the example of predicting failure in materials, s0= 50 MPa Weibull CDF.png
CDF of Weibull distribution for the example of predicting failure in materials, σ0= 50 MPa

in which m is the Weibull modulus. [1] is a parameter found during the fit of data to the Weibull distribution, and represents an input value for which ~67% of the data is encompassed. As m increases, the CDF distribution more closely resembles a step function at , which correlates with a sharper peak in the probability density function (PDF) defined by:

Failure analysis often uses this distribution, [2] as a CDF of the probability of failure F of a sample, as a function of applied stress σ, in the form:

PDF of Weibull distribution for the example of predicting failure in materials, s0= 50 MPa Weibull PDF.png
PDF of Weibull distribution for the example of predicting failure in materials, σ0= 50 MPa

Failure stress of the sample, σ, is substituted for the property in the above equation. The initial property is assumed to be 0, an unstressed, equilibrium state of the material.

The Weibull distribution can also be multi-modal, in which there would be multiple reported values and multiple reported moduli, m. The CDF for a bi-modal Weibull distribution has the following form, [3] when applied to materials failure analysis:

This represents a material which fails by two different modes. In this equation m1 is the modulus for the first mode, and m2 is the modulus for the second mode. Φ is the fraction of materials from the set which fail by the first mode. The corresponding PDF is defined by:

Bimodal Weibull PDF.png
Bimodal Webull CDF.png

Calculations

Looking at the cumulative Weibull Distribution function

Linearization of Weibull CDF.png

where m is the Weibull modulus. If the probability is plotted vs the stress, we find that the graph is sigmoidal. However if the equation is rearranged via

and the fact that e is the base of the natural log. A linear plot can be created via the equation being rearranged to


This linear plot has a slope of the Weibull modulus and an x-intercept of .

Use Cases

For ceramics and other brittle materials, the maximum stress that a sample can be measured to withstand before failure may vary from specimen to specimen, even under identical testing conditions. This is related to the distribution of physical flaws present in the surface or body of the brittle specimen, since brittle failure processes originate at these weak points. When flaws are consistent and evenly distributed, samples will behave more uniformly than when flaws are clustered inconsistently. This must be taken into account when describing the strength of the material, so strength is best represented as a distribution of values rather than as one specific value. The Weibull modulus is a shape parameter for the Weibull distribution model which, in this case, maps the probability of failure of a component at varying stresses.

Consider strength measurements made on many small samples of a brittle ceramic material. If the measurements show little variation from sample to sample, the calculated Weibull modulus will be high and a single strength value would serve as a good description of the sample-to-sample performance. It may be concluded that its physical flaws, whether inherent to the material itself or resulting from the manufacturing process, are distributed uniformly throughout the material. If the measurements show high variation, the calculated Weibull modulus will be low; this reveals that flaws are clustered inconsistently and the measured strength will be generally weak and variable. Products made from components of low Weibull modulus will exhibit low reliability and their strengths will be broadly distributed.

Test procedures for determining the Weibull modulus are specified in DIN EN 843-5 and DIN 51 110-3.

A further method to determine the strength of brittle materials has been described by the Wikibook contribution Weakest link determination by use of three parameter Weibull statistics.

Related Research Articles

<span class="mw-page-title-main">Normal distribution</span> Probability distribution

In statistics, a normal distribution or Gaussian distribution is a type of continuous probability distribution for a real-valued random variable. The general form of its probability density function is

<span class="mw-page-title-main">Exponential distribution</span> Probability distribution

In probability theory and statistics, the exponential distribution or negative exponential distribution is the probability distribution of the distance between events in a Poisson point process, i.e., a process in which events occur continuously and independently at a constant average rate; the distance parameter could be any meaningful mono-dimensional measure of the process, such as time between production errors, or length along a roll of fabric in the weaving manufacturing process. It is a particular case of the gamma distribution. It is the continuous analogue of the geometric distribution, and it has the key property of being memoryless. In addition to being used for the analysis of Poisson point processes it is found in various other contexts.

<span class="mw-page-title-main">Multivariate normal distribution</span> Generalization of the one-dimensional normal distribution to higher dimensions

In probability theory and statistics, the multivariate normal distribution, multivariate Gaussian distribution, or joint normal distribution is a generalization of the one-dimensional (univariate) normal distribution to higher dimensions. One definition is that a random vector is said to be k-variate normally distributed if every linear combination of its k components has a univariate normal distribution. Its importance derives mainly from the multivariate central limit theorem. The multivariate normal distribution is often used to describe, at least approximately, any set of (possibly) correlated real-valued random variables, each of which clusters around a mean value.

<span class="mw-page-title-main">Pareto distribution</span> Probability distribution

The Pareto distribution, named after the Italian civil engineer, economist, and sociologist Vilfredo Pareto, is a power-law probability distribution that is used in description of social, quality control, scientific, geophysical, actuarial, and many other types of observable phenomena; the principle originally applied to describing the distribution of wealth in a society, fitting the trend that a large portion of wealth is held by a small fraction of the population. The Pareto principle or "80-20 rule" stating that 80% of outcomes are due to 20% of causes was named in honour of Pareto, but the concepts are distinct, and only Pareto distributions with shape value of log45 ≈ 1.16 precisely reflect it. Empirical observation has shown that this 80-20 distribution fits a wide range of cases, including natural phenomena and human activities.

<span class="mw-page-title-main">Log-normal distribution</span> Probability distribution

In probability theory, a log-normal (or lognormal) distribution is a continuous probability distribution of a random variable whose logarithm is normally distributed. Thus, if the random variable X is log-normally distributed, then Y = ln(X) has a normal distribution. Equivalently, if Y has a normal distribution, then the exponential function of Y, X = exp(Y), has a log-normal distribution. A random variable which is log-normally distributed takes only positive real values. It is a convenient and useful model for measurements in exact and engineering sciences, as well as medicine, economics and other topics (e.g., energies, concentrations, lengths, prices of financial instruments, and other metrics).

<span class="mw-page-title-main">Weibull distribution</span> Continuous probability distribution

In probability theory and statistics, the Weibull distribution is a continuous probability distribution. It models a broad range of random variables, largely in the nature of a time to failure or time between events. Examples are maximum one-day rainfalls and the time a user spends on a web page.

<span class="mw-page-title-main">Rayleigh distribution</span> Probability distribution

In probability theory and statistics, the Rayleigh distribution is a continuous probability distribution for nonnegative-valued random variables. Up to rescaling, it coincides with the chi distribution with two degrees of freedom. The distribution is named after Lord Rayleigh.

<span class="mw-page-title-main">Gumbel distribution</span> Particular case of the generalized extreme value distribution

In probability theory and statistics, the Gumbel distribution is used to model the distribution of the maximum of a number of samples of various distributions.

The Gram–Charlier A series, and the Edgeworth series are series that approximate a probability distribution in terms of its cumulants. The series are the same; but, the arrangement of terms differ. The key idea of these expansions is to write the characteristic function of the distribution whose probability density function f is to be approximated in terms of the characteristic function of a distribution with known and suitable properties, and to recover f through the inverse Fourier transform.

In probability theory and statistics, the generalized extreme value (GEV) distribution is a family of continuous probability distributions developed within extreme value theory to combine the Gumbel, Fréchet and Weibull families also known as type I, II and III extreme value distributions. By the extreme value theorem the GEV distribution is the only possible limit distribution of properly normalized maxima of a sequence of independent and identically distributed random variables. Note that a limit distribution needs to exist, which requires regularity conditions on the tail of the distribution. Despite this, the GEV distribution is often used as an approximation to model the maxima of long (finite) sequences of random variables.

<span class="mw-page-title-main">Scaled inverse chi-squared distribution</span> Probability distribution

The scaled inverse chi-squared distribution is the distribution for x = 1/s2, where s2 is a sample mean of the squares of ν independent normal random variables that have mean 0 and inverse variance 1/σ2 = τ2. The distribution is therefore parametrised by the two quantities ν and τ2, referred to as the number of chi-squared degrees of freedom and the scaling parameter, respectively.

The Anderson–Darling test is a statistical test of whether a given sample of data is drawn from a given probability distribution. In its basic form, the test assumes that there are no parameters to be estimated in the distribution being tested, in which case the test and its set of critical values is distribution-free. However, the test is most often used in contexts where a family of distributions is being tested, in which case the parameters of that family need to be estimated and account must be taken of this in adjusting either the test-statistic or its critical values. When applied to testing whether a normal distribution adequately describes a set of data, it is one of the most powerful statistical tools for detecting most departures from normality. K-sample Anderson–Darling tests are available for testing whether several collections of observations can be modelled as coming from a single population, where the distribution function does not have to be specified.

Expected shortfall (ES) is a risk measure—a concept used in the field of financial risk measurement to evaluate the market risk or credit risk of a portfolio. The "expected shortfall at q% level" is the expected return on the portfolio in the worst of cases. ES is an alternative to value at risk that is more sensitive to the shape of the tail of the loss distribution.

A ratio distribution is a probability distribution constructed as the distribution of the ratio of random variables having two other known distributions. Given two random variables X and Y, the distribution of the random variable Z that is formed as the ratio Z = X/Y is a ratio distribution.

<span class="mw-page-title-main">Truncated normal distribution</span> Type of probability distribution

In probability and statistics, the truncated normal distribution is the probability distribution derived from that of a normally distributed random variable by bounding the random variable from either below or above. The truncated normal distribution has wide applications in statistics and econometrics.

In financial mathematics, tail value at risk (TVaR), also known as tail conditional expectation (TCE) or conditional tail expectation (CTE), is a risk measure associated with the more general value at risk. It quantifies the expected value of the loss given that an event outside a given probability level has occurred.

In probability, statistics, economics, and actuarial science, the Benini distribution is a continuous probability distribution that is a statistical size distribution often applied to model incomes, severity of claims or losses in actuarial applications, and other economic data. Its tail behavior decays faster than a power law, but not as fast as an exponential. This distribution was introduced by Rodolfo Benini in 1905. Somewhat later than Benini's original work, the distribution has been independently discovered or discussed by a number of authors.

In probability theory, the rectified Gaussian distribution is a modification of the Gaussian distribution when its negative elements are reset to 0. It is essentially a mixture of a discrete distribution and a continuous distribution as a result of censoring.

<span class="mw-page-title-main">Log-Cauchy distribution</span>

In probability theory, a log-Cauchy distribution is a probability distribution of a random variable whose logarithm is distributed in accordance with a Cauchy distribution. If X is a random variable with a Cauchy distribution, then Y = exp(X) has a log-Cauchy distribution; likewise, if Y has a log-Cauchy distribution, then X = log(Y) has a Cauchy distribution.

<span class="mw-page-title-main">Size effect on structural strength</span> Deviation with the scale in the theories of elastic or plastic structures

According to the classical theories of elastic or plastic structures made from a material with non-random strength (ft), the nominal strength (σN) of a structure is independent of the structure size (D) when geometrically similar structures are considered. Any deviation from this property is called the size effect. For example, conventional strength of materials predicts that a large beam and a tiny beam will fail at the same stress if they are made of the same material. In the real world, because of size effects, a larger beam will fail at a lower stress than a smaller beam.

References

  1. Weibull, Waloddi (1951). "A Statistical Distribution Function of Wide Applicability". Journal of Applied Mechanics.
  2. Meyers, Marc; Chawla, Krishan (2009). Mechanical Behavior of Materials (2nd ed.). Cambridge University Press. ISBN   978-0-511-45557-5.
  3. Loidl, Dieter; Paris, Oskar; Rennhofer, H.; Müller, Martin; Peterlik, Herwig (November 2007). "Skin-core structure and bimodal Weibull distribution of the strength of carbon fibers". Carbon. 45 (14): 2801–2805. doi:10.1016/j.carbon.2007.09.011. ISSN   0008-6223.