Whitetail Clean Energy | |
---|---|
Country | England |
Location | Wilton, Redcar and Cleveland |
Coordinates | 54°34′30″N1°07′37″W / 54.575°N 1.127°W |
Status | Proposed |
Employees | 200 (projected) |
Power generation | |
Nameplate capacity | 300 MW |
External links | |
Website | official website |
The Whitetail Clean Energy is a proposed power station in Wilton, Redcar and Cleveland, England. The generating process of the plant is listed as a "clean energy source", using natural gas and oxygen in an Allam-Fetvedt Cycle to create power. The excess carbon dioxide (CO2) not used by the co-generation process is intended to be captured and stored under the North Sea, making the plant the first in the United Kingdom to utilise this type of technology, and also use carbon sequestration under the North Sea. The plant is also included in the Net Zero Teesside project. The power plant is proposed to start generating in 2025.
The power station, which is a joint venture between 8 Rivers Capital and Sembcorp (UK), is expected to create 2,000 jobs in the building process, with a further 200 to run the plant on a day-to-day basis. [1] The plant would combust pure oxygen with natural gas, using a high pressure carbon dioxide (CO2) stream (supercritical carbon dioxide), rather than steam to rotate a turbine, which would generate the electricity. The CO2 stream would then be fed through a heat exchanger and then cooled. Excess CO
2 of around 800,000 tons per year would be captured and stored under the North Sea. [2]
Whilst the Allam-Fetvedt Cycle was not successfully tested until 2018, [4] the UK government had been supporting a zero CO2 project on Teesside since 2012. [5] The plant was described as being the United Kingdom's first "net zero" power station, and the first to use the carbon capture and storage technology. [6] Whilst the power generation process does not emit any CO2, it does produce it in the closed loop system. The excess gas is intended to be stored but can also be utilised for other purposes. [7] The power plant would be located within the Teesside Freeport Zone and subject to regulatory approval, the scheme could be up and running by 2025. [8] 8 Rivers Capital stated that it had completed a pre-FEED (front end engineering design) study in early 2021, which was partly funded by the UK Department for Business, Energy & Industrial Strategy. [9]
The UK government Minister of State for Business, Energy and Clean Growth, Anne-Marie Trevelyan, stated that the project was a "..real game-changer [and would] revitalise this key industrial heartland." The labour MP for Stockton North, Alex Cunningham, described the announcement as "great news", but wanted assurances that jobs at the plant would go to local people. [8] The plant will also be part of the Net Zero Teesside project, which plans to be the first decarbonised industrial cluster in the world. This project aims to enable the heavy industry on Teesside somewhere to store the carbon produced during their processes, rather than emitting them into the atmosphere. [10]
A zero-emission vehicle (ZEV) is a vehicle that does not emit exhaust gas or other pollutants from the onboard source of power. The California definition also adds that this includes under any and all possible operational modes and conditions. This is because under cold-start conditions for example, internal combustion engines tend to produce the maximum amount of pollutants. In a number of countries and states, transport is cited as the main source of greenhouse gases (GHG) and other pollutants. The desire to reduce this is thus politically strong.
A fossil fuel power station is a thermal power station which burns a fossil fuel, such as coal, oil, or natural gas, to produce electricity. Fossil fuel power stations have machinery to convert the heat energy of combustion into mechanical energy, which then operates an electrical generator. The prime mover may be a steam turbine, a gas turbine or, in small plants, a reciprocating gas engine. All plants use the energy extracted from the expansion of a hot gas, either steam or combustion gases. Although different energy conversion methods exist, all thermal power station conversion methods have their efficiency limited by the Carnot efficiency and therefore produce waste heat.
An emission intensity is the emission rate of a given pollutant relative to the intensity of a specific activity, or an industrial production process; for example grams of carbon dioxide released per megajoule of energy produced, or the ratio of greenhouse gas emissions produced to gross domestic product (GDP). Emission intensities are used to derive estimates of air pollutant or greenhouse gas emissions based on the amount of fuel combusted, the number of animals in animal husbandry, on industrial production levels, distances traveled or similar activity data. Emission intensities may also be used to compare the environmental impact of different fuels or activities. In some case the related terms emission factor and carbon intensity are used interchangeably. The jargon used can be different, for different fields/industrial sectors; normally the term "carbon" excludes other pollutants, such as particulate emissions. One commonly used figure is carbon intensity per kilowatt-hour (CIPK), which is used to compare emissions from different sources of electrical power.
Coal pollution mitigation is a series of systems and technologies that seek to mitigate health and environmental impact of burning coal for energy. Burning coal releases harmful substances that contribute to air pollution, acid rain, and greenhouse gas emissions. Mitigation includes precombustion approaches, such as cleaning coal, and post combustion approaches, include flue-gas desulfurization, selective catalytic reduction, electrostatic precipitators, and fly ash reduction. These measures aim to reduce coal's impact on human health and the environment.
Supercritical carbon dioxide is a fluid state of carbon dioxide where it is held at or above its critical temperature and critical pressure.
Carbon capture and storage (CCS) is a process by which carbon dioxide (CO2) from industrial installations is separated before it is released into the atmosphere, then transported to a long-term storage location. The CO2 is captured from a large point source, such as a natural gas processing plant and is typically stored in a deep geological formation. Around 80% of the CO2 captured annually is used for enhanced oil recovery (EOR), a process by which CO2 is injected into partially-depleted oil reservoirs in order to extract more oil and then is largely left underground. Since EOR utilizes the CO2 in addition to storing it, CCS is also known as carbon capture, utilization, and storage (CCUS).
An integrated gasification combined cycle (IGCC) is a technology using a high pressure gasifier to turn coal and other carbon based fuels into pressurized gas—synthesis gas (syngas). It can then remove impurities from the syngas prior to the electricity generation cycle. Some of these pollutants, such as sulfur, can be turned into re-usable byproducts through the Claus process. This results in lower emissions of sulfur dioxide, particulates, mercury, and in some cases carbon dioxide. With additional process equipment, a water-gas shift reaction can increase gasification efficiency and reduce carbon monoxide emissions by converting it to carbon dioxide. The resulting carbon dioxide from the shift reaction can be separated, compressed, and stored through sequestration. Excess heat from the primary combustion and syngas fired generation is then passed to a steam cycle, similar to a combined cycle gas turbine. This process results in improved thermodynamic efficiency, compared to conventional pulverized coal combustion.
Carbon capture and storage (CCS) is a technology that can capture carbon dioxide CO2 emissions produced from fossil fuels in electricity, industrial processes which prevents CO2 from entering the atmosphere. Carbon capture and storage is also used to sequester CO2 filtered out of natural gas from certain natural gas fields. While typically the CO2 has no value after being stored, Enhanced Oil Recovery uses CO2 to increase yield from declining oil fields.
The milestones for carbon capture and storage show the lack of commercial scale development and implementation of CCS over the years since the first carbon tax was imposed.
Carbon dioxide removal (CDR) is a process in which carbon dioxide is removed from the atmosphere by deliberate human activities and durably stored in geological, terrestrial, or ocean reservoirs, or in products. This process is also known as carbon removal, greenhouse gas removal or negative emissions. CDR is more and more often integrated into climate policy, as an element of climate change mitigation strategies. Achieving net zero emissions will require first and foremost deep and sustained cuts in emissions, and then—in addition—the use of CDR. In the future, CDR may be able to counterbalance emissions that are technically difficult to eliminate, such as some agricultural and industrial emissions.
The Kędzierzyn Zero-Emission Power and Chemical Complex was a proposed facility in Kędzierzyn-Koźle, Poland. It was planned to combine the functions of power and heat generation with chemical production and carbon capture and storage. The project was proposed by a consortium of chemicals producers, including Zakłady Azotowe Kędzierzyn and the electricity company Południowy Koncern Energetyczny. The facility would have produced synthesis gas by gasification of hard coal. Gas produced by the plant would have been used for power and heat generation, or for the production of other chemicals.
Greenhouse gas emissions are one of the environmental impacts of electricity generation. Measurement of life-cycle greenhouse gas emissions involves calculating the global warming potential (GWP) of energy sources through life-cycle assessment. These are usually sources of only electrical energy but sometimes sources of heat are evaluated. The findings are presented in units of global warming potential per unit of electrical energy generated by that source. The scale uses the global warming potential unit, the carbon dioxide equivalent, and the unit of electrical energy, the kilowatt hour (kWh). The goal of such assessments is to cover the full life of the source, from material and fuel mining through construction to operation and waste management.
In 2021, net greenhouse gas (GHG) emissions in the United Kingdom (UK) were 427 million tonnes (Mt) carbon dioxide equivalent, 80% of which was carbon dioxide itself. Emissions increased by 5% in 2021 with the easing of COVID-19 restrictions, primarily due to the extra road transport. The UK has over time emitted about 3% of the world total human caused CO2, with a current rate under 1%, although the population is less than 1%.
Carbon-neutral fuel is fuel which produces no net-greenhouse gas emissions or carbon footprint. In practice, this usually means fuels that are made using carbon dioxide (CO2) as a feedstock. Proposed carbon-neutral fuels can broadly be grouped into synthetic fuels, which are made by chemically hydrogenating carbon dioxide, and biofuels, which are produced using natural CO2-consuming processes like photosynthesis.
The Allam Cycle or Allam-Fetvedt Cycle is a process for converting carbonaceous fuels into thermal energy, while capturing the generated carbon dioxide and water.
Rodney John Allam, MBE is an English chemical engineer and fellow of the Institution of Chemical Engineers who is credited with inventions related to power generation, notably the Allam power cycle, which is a generation process for fossil fuels, with integrated carbon dioxide capture.
Petra Nova is a carbon capture project designed to reduce carbon emissions from one of the boilers of a coal burning power plant in Thompsons, Texas. It is a multi-million dollar project taken up by NRG Energy and JX Nippon Oil to retrofit one of the boilers at their WA Parish Generating Station with a post-combustion carbon capture treatment system to treat a portion of the atmospheric exhaust emissions from the retrofitted boiler.
Direct air capture (DAC) is the use of chemical or physical processes to extract carbon dioxide directly from the ambient air. If the extracted CO2 is then sequestered in safe long-term storage, the overall process is called direct air carbon capture and sequestration (DACCS), achieving carbon dioxide removal and be a "negative emissions technology" (NET).
Carbon storage in the North Sea includes programmes being run by several Northern European countries to capture carbon, and store it under the North Sea in either old oil and gas workings, or within saline aquifers. Whilst there have been some moves to international co-operation, most of the Carbon Capture and Storage (CCS) programmes are governed by the laws of the country that is running them. Because the governments have pledged net zero carbon emissions by 2050, they have to find ways to deal with any remaining CO2 produced, such as by heavy industry. Around 90% of the identified storage geologies for carbon dioxide in Europe are shared between Norway and the United Kingdom; all of the designated sites for storage are located in the North Sea.