The XMAP215/Dis1 family is a highly conserved group of microtubule-associated proteins (MAPs) in eukaryotic organisms. [1] These proteins are unique MAPs because they primarily interact with the growing-end (plus-end) of microtubules. This special property classifies this protein family as plus-end tracking proteins (+TIPs). [2]
The basic structure of the protein family consists of TOG (Tumor Overexpressed Gene) domains, ranging from 2-5 units. The family is categorized into three groups based on the number of TOG domains that specific protein contains. Higher eukaryotic organisms, categorized in the first group, contain five, N-terminus TOG domains and a variable region that connects to a C-terminal domain. [3] These domains are highly conserved monomeric sequences. The second group consists of only the Caenorhabditis elegans protein zyg-9, which has three TOG domains. [3] It is similar, though, to higher eukaryotes because of its variable region and C-terminal domain. The third group consists of lower eukaryotic organisms, mainly yeast, that contain only two TOG domains and a coiled-coil domain. [3]
Thorough analysis of the TOG3 domain in zyg-9 provides a basic understanding of this domain that is conserved throughout all members of the XMAP215/Dis1 family. [3] Each domain consists of six HEAT (Huntingtin, Elongation factor 3, the PR65/A subunit of protein phosphatase 2A and the lipid kinase Tor) repeat units that are adjacently aligned. Each HEAT molecule consists of two α helices that are connected by a single loop. [3] These α helices form the wide, flat surface of the domain. The loops between HEAT repeats and between individual α helices run along the short side of the domain. This short region is necessary for binding to tubulin. An additional HEAT repeat, localized between the first and second HEAT repeat, is exclusive to the TOG3 domain in zyg-9 and the TOG5 domains in the first group family proteins. [3]
The C-terminal end of the protein has group-specific characteristics. In the third protein group, the coiled-coil domain is essential for dimerization in simple eukaryotes. [3] This is because simple eukaryotes such as yeast produce proteins in dimers. In first and second groups, the C-terminal domain is known to interact with transforming acidic coiled-coil protein 3 (TACC3), which transports the protein to the centrosomes during mitosis. [4]
XMAP215/Dis1 proteins can add or remove tubulin dimers in a two-step process. XMAP215 has been shown to bind to tubulin in a 1:1 complex, meaning that XMAP215 might not bind multiple tubulin dimers at once. [5] The αβ-tubulin dimer is known to interact with at least TOG domain, TOG1, which tightly binds inside the bend of the tubulin dimer and is also found beyond the direct plus-end of the microtubule. [6] The tubulin then “straightens,” which forms a weak interaction with TOG1. TOG2, however, can form a tight bind to straight tubulin. Much like a hand-off, TOG1 releases the dimer, which then binds to TOG2. TOG2 then integrates the tubulin dimer into the lattice, extending the microtubule. [6]
XMAP215/Dis1 family proteins promote both growth and reduction of microtubule length, depending on the concentration of free tubulin; this is known as dynamic instability. [1] Protein behavior is also cell-cycle dependent. Reducing ch-TOG expression leads to improper alignment of the chromosomes during metaphase. [7] One study suggests that in Schizosaccharomyces pombe , the protein Cdc2 regulates Dis1 through phosphorylation and dephosphorylation during metaphase and anaphase. Phosphorylating Dis1 leads to localization at the kinetochores during metaphase, whereas dephosphorylation during anaphase leads to an accumulation of Dis1 on microtubule spindles. [8] In Drosophila, the family member Mini spindles (Msps) is essential for maintaining the integrity of mitotic spindles, which are important for separating chromosomes during mitosis. Reducing Msps activity creates short microtubules, which describes the name of the gene. [9] Msps is also important during oogenesis. When oocytes are depleted of Msps expression, bicoid mRNA localization is less efficient during early stages of oogenesis, but then completely dispersed later in development. [10] Msps is not only responsible for transporting bicoid mRNA throughout the cell, but it also localizes mRNA to the anterior (head) end of the oocyte [10] Additionally, this gene is critical for the organization of tubular endoplasmic reticulum and in Exuperantia protein localization. Exuperantia is necessary for accumulating bicoid mRNA in the head region of the oocyte. [11] Another key function of XMAP215 in microtubule dynamics is in the regulation of axon guidance. [12] This is when microtubules extend into or retract from the axonal growth cone, which guides movement by receiving concentrated signaling cues. [13] In Drosophila, Msps promotes microtubule dynamics in axonal guidance at the embryonic ventral nerve cord midline. [14]
Plus-end tracking proteins are enzymes that localize and interact at the plus-end of microtubules. When tagged with green fluorescent protein (GFP), +TIPs can be visualized and tracked in the direction of microtubule growth. As a +TIP, XMAP215/Dis1 family proteins interact with other +TIPs. [2]
In Xenopus , XMAP215 and EB1 have been reported to interact with each other. While XMAP215 functions to both grow and shrink the microtubule, EB1 is only present during growth. [15] Alone, these proteins have mild effects on microtubule growth. Together, these proteins act in synergy and lengthen microtubules at a much greater rate. Without XMAP215, EB1 does not have a tubulin polymerase that can efficiently construct the microtubule plus-end with free tubulin. Without EB1, XMAP215 continues to add tubulin to the plus-end, but the integrity of the microtubule lattice becomes compromised. This is because EB1 binds to the microtubule lattice as a stabilizer to keep the tubulin straight. [15]
XMAP215: Xenopus Microtubule-associated protein, found in Xenopus species. The number 215 refers to the size of the protein, which is 215 kDa. This protein was discovered in 1987 through the investigation of microtubule regulation in Xenopus oocytes. [16] In 2008, the protein was identified as a plus-end microtubule polymerase. [5]
ch-Tog: colonic and hepatic Tumour Overexpressing Gene, found in Homo sapiens . It was first identified in humans in 1996 as an overexpressed gene in tumors, but was recognized for its plus-end microtubule regulation in 1998. [17]
Msps: Mini spindles. This protein is found in Drosophila species. This protein was discovered in 1999. [9]
DdCP224: Dictyostelium discoideum Centrosomal Protein. This protein's size is approximately 224 kDa. It was detected in 2000 through immunoscreening of DNA libraries for centrosomal proteins. [18]
Mor1: microtubule organisation gene 1. Found in Arabidopsis thaliana . This protein was discovered in 2001 as an organizer of cortical microtubules [19]
zyg-9: zygotic defective mutant, found in C. elegans. In 1976, this gene was identified when zygotes, with such a mutation, failed to hatch. Zyg-9 was identified as a microtubule regulator in 1980. [20]
alp14/Dis1: altered polarity/Defect in sister chromatid disjoining. These proteins are found in S. pombe. Dis1 is the preferred homologue in colder temperatures, while alp14 is preferred in higher temperatures. Dis1 was recognized in 1988, whereas its homologue alp14 was identified in 2001 [20]
Stu2p: suppressors of a tubulin mutation. This protein is found in Saccharomyces cerevisiae . It was discovered in 1997 through a screen and was found to influence microtubule regulation. [21] AlpA: alkaline phosphotase, found in Aspergillus nidulans . In 2007, this protein was identified to interact with microtubule plus ends and also localize at spindle bodies, which is characteristic of XMAP215/Dis1 family proteins. [22]
Microtubules are polymers of tubulin that form part of the cytoskeleton and provide structure and shape to eukaryotic cells. Microtubules can be as long as 50 micrometres, as wide as 23 to 27 nm and have an inner diameter between 11 and 15 nm. They are formed by the polymerization of a dimer of two globular proteins, alpha and beta tubulin into protofilaments that can then associate laterally to form a hollow tube, the microtubule. The most common form of a microtubule consists of 13 protofilaments in the tubular arrangement.
In cell biology, the spindle apparatus is the cytoskeletal structure of eukaryotic cells that forms during cell division to separate sister chromatids between daughter cells. It is referred to as the mitotic spindle during mitosis, a process that produces genetically identical daughter cells, or the meiotic spindle during meiosis, a process that produces gametes with half the number of chromosomes of the parent cell.
Tubulin in molecular biology can refer either to the tubulin protein superfamily of globular proteins, or one of the member proteins of that superfamily. α- and β-tubulins polymerize into microtubules, a major component of the eukaryotic cytoskeleton. Microtubules function in many essential cellular processes, including mitosis. Tubulin-binding drugs kill cancerous cells by inhibiting microtubule dynamics, which are required for DNA segregation and therefore cell division.
A kinetochore is a disc-shaped protein structure associated with duplicated chromatids in eukaryotic cells where the spindle fibers attach during cell division to pull sister chromatids apart. The kinetochore assembles on the centromere and links the chromosome to microtubule polymers from the mitotic spindle during mitosis and meiosis. The term kinetochore was first used in a footnote in a 1934 Cytology book by Lester W. Sharp and commonly accepted in 1936. Sharp's footnote reads: "The convenient term kinetochore has been suggested to the author by J. A. Moore", likely referring to John Alexander Moore who had joined Columbia University as a freshman in 1932.
Stathmin, also known as metablastin and oncoprotein 18 is a protein that in humans is encoded by the STMN1 gene.
Aurora kinase A also known as serine/threonine-protein kinase 6 is an enzyme that in humans is encoded by the AURKA gene.
In cell biology, microtubule nucleation is the event that initiates de novo formation of microtubules (MTs). These filaments of the cytoskeleton typically form through polymerization of α- and β-tubulin dimers, the basic building blocks of the microtubule, which initially interact to nucleate a seed from which the filament elongates.
Aurora kinase B is a protein that functions in the attachment of the mitotic spindle to the centromere.
Dynactin is a 23 subunit protein complex that acts as a co-factor for the microtubule motor cytoplasmic dynein-1. It is built around a short filament of actin related protein-1 (Arp1).
Microtubule-associated protein RP/EB family member 1 is a protein that in humans is encoded by the MAPRE1 gene.
Microtubule-associated protein RP/EB family member 2 is a protein that in humans is encoded by the MAPRE2 gene.
Targeting protein for Xklp2 is a protein that in humans is encoded by the TPX2 gene. It is one of the many spindle assembly factors that play a key role in inducing microtubule assembly and growth during M phase.
Pericentrin (kendrin), also known as PCNT and pericentrin-B (PCNTB), is a protein which in humans is encoded by the PCNT gene on chromosome 21. This protein localizes to the centrosome and recruits proteins to the pericentriolar matrix (PCM) to ensure proper centrosome and mitotic spindle formation, and thus, uninterrupted cell cycle progression. This gene is implicated in many diseases and disorders, including congenital disorders such as microcephalic osteodysplastic primordial dwarfism type II (MOPDII) and Seckel syndrome.
Anillin is a conserved protein implicated in cytoskeletal dynamics during cellularization and cytokinesis. The ANLN gene in humans and the scraps gene in Drosophila encode Anillin. In 1989, anillin was first isolated in embryos of Drosophila melanogaster. It was identified as an F-actin binding protein. Six years later, the anillin gene was cloned from cDNA originating from a Drosophila ovary. Staining with anti-anillin antibody showed the anillin localizes to the nucleus during interphase and to the contractile ring during cytokinesis. These observations agree with further research that found anillin in high concentrations near the cleavage furrow coinciding with RhoA, a key regulator of contractile ring formation.
Cytoskeleton-associated protein 5 is a microtubule-associated protein that in humans is encoded by the CKAP5 gene. It is the homolog of the Xenopus protein XMAP215 and is also known as ch-Tog.
Catastrophin is a term use to describe proteins that are associated with the disassembly of microtubules. Catastrophins affect microtubule shortening, a process known as microtubule catastrophe.
A HEAT repeat is a protein tandem repeat structural motif composed of two alpha helices linked by a short loop. HEAT repeats can form alpha solenoids, a type of solenoid protein domain found in a number of cytoplasmic proteins. The name "HEAT" is an acronym for four proteins in which this repeat structure is found: Huntingtin, elongation factor 3 (EF3), protein phosphatase 2A (PP2A), and the yeast kinase TOR1. HEAT repeats form extended superhelical structures which are often involved in intracellular transport; they are structurally related to armadillo repeats. The nuclear transport protein importin beta contains 19 HEAT repeats.
mDia1 is a member of the protein family called the formins and is a Rho effector. It is the mouse version of the diaphanous homolog 1 of Drosophila. mDia1 localizes to cells' mitotic spindle and midbody, plays a role in stress fiber and filopodia formation, phagocytosis, activation of serum response factor, formation of adherens junctions, and it can act as a transcription factor. mDia1 accelerates actin nucleation and elongation by interacting with barbed ends of actin filaments. The gene encoding mDia1 is located on Chromosome 18 of Mus musculus and named Diap1.
Centralspindlin is a motor complex implicated in cell division. It contributes to virtually every step in cytokinesis, It is highly conserved in animal cells as a component of the spindle midzone and midbody. Centralspindlin is required for the assembly of the mitotic spindle as well as for microtubule bundling and anchoring of midbody microtubules to the plasma membrane. This complex is also implicated in tethering the spindle apparatus to the plasma membrane during cytokinesis This interaction permits cleavage furrow ingression. In addition, centralspindlin's interaction with the ESCRT III allows for abscission to occur.
Microtubule plus-end/positive-end tracking proteins or +TIPs are a type of microtubule associated protein (MAP) which accumulate at the plus ends of microtubules. +TIPs are arranged in diverse groups which are classified based on their structural components; however, all classifications are distinguished by their specific accumulation at the plus end of microtubules and their ability to maintain interactions between themselves and other +TIPs regardless of type. +TIPs can be either membrane bound or cytoplasmic, depending on the type of +TIPs. Most +TIPs track the ends of extending microtubules in a non-autonomous manner.