Xenorhabdus koppenhoeferi

Last updated

Xenorhabdus koppenhoeferi
Scientific classification
Kingdom:
Phylum:
Class:
Order:
Family:
Genus:
Species:
X. koppenhoeferi
Binomial name
Xenorhabdus koppenhoeferi
Tailliez et al. 2006 [1]
Type strain
CIP 109199, DSM 18168, USNJ01 [2]

Xenorhabdus koppenhoeferi is a bacterium from the genus of Xenorhabdus which has been isolated from the nematode Steinernema scarabaei in the United States. [1] [3] [4] [5]

Contents

Related Research Articles

<i>Wolbachia</i> Genus of bacteria in the Alphaproteobacteria class

Wolbachia is a genus of intracellular bacteria that infects mainly arthropod species, including a high proportion of insects, and also some nematodes. It is one of the most common parasitic microbes and is possibly the most common reproductive parasite in the biosphere. Its interactions with its hosts are often complex, and in some cases have evolved to be mutualistic rather than parasitic. Some host species cannot reproduce, or even survive, without Wolbachia colonisation. One study concluded that more than 16% of neotropical insect species carry bacteria of this genus, and as many as 25 to 70% of all insect species are estimated to be potential hosts.

Metagenomics Study of genes found in the environment

Metagenomics is the study of genetic material recovered directly from environmental samples. The broad field may also be referred to as environmental genomics, ecogenomics or community genomics.

Alphaproteobacteria Class of bacteria

Alphaproteobacteria is a class of bacteria in the phylum Proteobacteria. Its members are highly diverse and possess few commonalities, but nevertheless share a common ancestor. Like all Proteobacteria, its members are gram-negative and some of its intracellular parasitic members lack peptidoglycan and are consequently gram variable.

<i>Photorhabdus luminescens</i>

Photorhabdus luminescens is a Gammaproteobacterium of the family Morganellaceae, and is a lethal pathogen of insects.

TAAR5

Trace amine-associated receptor 5 is a protein that in humans is encoded by the TAAR5 gene. In vertebrates, TAAR5 is expressed in the olfactory epithelium.

Human Microbiome Project

The Human Microbiome Project (HMP) was a United States National Institutes of Health (NIH) research initiative to improve understanding of the microbial flora involved in human health and disease. Launched in 2007, the first phase (HMP1) focused on identifying and characterizing human microbial flora. The second phase, known as the Integrative Human Microbiome Project (iHMP) launched in 2014 with the aim of generating resources to characterize the microbiome and elucidating the roles of microbes in health and disease states. The program received $170 million in funding by the NIH Common Fund from 2007 to 2016.

Bacterial small RNAs (sRNA) are small RNAs produced by bacteria; they are 50- to 500-nucleotide non-coding RNA molecules, highly structured and containing several stem-loops. Numerous sRNAs have been identified using both computational analysis and laboratory-based techniques such as Northern blotting, microarrays and RNA-Seq in a number of bacterial species including Escherichia coli, the model pathogen Salmonella, the nitrogen-fixing alphaproteobacterium Sinorhizobium meliloti, marine cyanobacteria, Francisella tularensis, Streptococcus pyogenes, the pathogen Staphylococcus aureus, and the plant pathogen Xanthomonas oryzae pathovar oryzae. Bacterial sRNAs affect how genes are expressed within bacterial cells via interaction with mRNA or protein, and thus can affect a variety of bacterial functions like metabolism, virulence, environmental stress response, and structure.

<i>Heterorhabditis bacteriophora</i>

Heterorhabditis bacteriophora is a species of entomopathogenic nematode known commonly as beneficial nematodes. They are microscopic and are used in gardening as a form of biological pest control. They are used to control ants, fleas, moths, beetles, flies, weevils, and other pests. They are also amenable to in vitro culture, making them also of interest to evolutionary and molecular biologists who investigate parasitic and symbiotic systems. Heterorhabditis bacteriophora was selected by the National Human Genome Research Institute as a sequencing target, the inbred strain H. bacteriophora TTO1 was sequenced using Roche 454 technology, and a high-quality 77 Mb draft genome assembly was produced in 2013. To reproduce the nematodes release Photorhabdus bacteria from their digestive tract thus killing these pests, then using the cadaver to grow and reproduce.

Xenorhabdus is a genus of motile, gram-negative bacteria from the family of the Morganellaceae. All the species of the genus are only known to live in symbiosis with soil entomopathogenic nematodes from the genus Steinernema.

The lung microbiota, is the pulmonary microbial community consisting of a complex variety of microorganisms found in the lower respiratory tract particularly on the mucous layer and the epithelial surfaces. These microorganisms include bacteria, fungi, viruses and bacteriophages. The bacterial part of the microbiota has been more closely studied. It consists of a core of nine genera: Prevotella, Sphingomonas, Pseudomonas, Acinetobacter, Fusobacterium, Megasphaera, Veillonella, Staphylococcus, and Streptococcus. They are aerobes as well as anaerobes and aerotolerant bacteria. The microbial communities are highly variable in particular individuals and compose of about 140 distinct families. The bronchial tree for instance contains a mean of 2000 bacterial genomes per cm2 surface. The harmful or potentially harmful bacteria are also detected routinely in respiratory specimens. The most significant are Moraxella catarrhalis, Haemophilus influenzae, and Streptococcus pneumoniae. They are known to cause respiratory disorders under particular conditions namely if the human immune system is impaired. The mechanism by which they persist in the lower airways in healthy individuals is unknown.

<i>Angomonas deanei</i> Species of parasitic flagellate protist in the Kinetoplastea class

Angomonas deanei is a flagellated trypanosomatid. It is an obligate parasite in the gastrointestinal tract of insects, and is in turn a host to symbiotic bacteria. The bacterial endosymbiont maintains a permanent mutualistic relationship with the protozoan such that it is no longer able to reproduce and survive on its own. The symbiosis is similar to that found in another protist Strigomonas culicis.

Deinococcus geothermalis is a bacterium. It produces orange-pigmented colonies and has an optimum growth temperature of about 45 °C (113 °F) to 50 °C (122 °F). It is extremely gamma radiation-resistant. Its type strain is AG-3a.

Xenorhabdus bovienii is a bacterium from the genus of Xenorhabdus which has been isolated from the nematode Steinernema bibionis, Steinernema krsussei, Steinernema affine, Steinernema carpocapsae, Steinernema feltiae, Steinernema intermedium, Steinernema jollieti and Steinernema weiseri. Xenorhabdus bovienii produces N-Butanoylpyrrothine, N-(3-Methylbutanoyl)pyrrothine and Xenocyloins.

Xenorhabdus indica is a bacterium from the genus of Xenorhabdus which has been isolated from the nematodes Steinernema thermophilum and Steinernema yirgalemense. Xenorhabdus indica produces the Taxlllaids A–G.

Xenorhabdus szentirmaii is a bacterium from the genus of Xenorhabdus which has been isolated from the nematode Steinernema rarum in Argentina. Xenorhabdus szentirmaii produces szentiamide, xenematide, bicornutin A xenofuranone A and xenofuranone B.

<i>Steinernema carpocapsae</i>

Steinernema carpocapsae is an entomopathogenic nematode and a member of the family Steinernematidae. It is a parasitic roundworm that has evolved an insect-killing symbiosis with bacteria, and kills its hosts within a few days of infection. This parasite releases its bacterial symbiont along with a variety of proteins into the host after infection, and together the bacteria and nematode overcome host immunity and kill the host quickly. As a consequence, S. carpocapsae has been widely adapted for use as a biological control agent in agriculture and pest control. S. carpocapsae is considered a generalist parasite and has been effectively used to control a variety of insects including: Webworms, cutworms, armyworms, girdlers, some weevils, and wood-borers. This species is an example of an "ambush" forager, standing on its tail in an upright position near the soil surface and attaching to passing hosts, even capable of jumping. As an ambush forager, S. carpocapsae is thought to be especially effective when applied against highly mobile surface-adapted insects. S. carpocapsae can sense carbon dioxide production, making the spiracles a key portal of entry into its insect hosts. It is most effective at temperatures ranging from 22–28 °C (72–82 °F).

<i>Drosophila neotestacea</i> Species of fly

Drosophila neotestacea is a member of the Testacea species group of Drosophila. Testacea species are specialist fruit flies that breed on the fruiting bodies of mushrooms. These flies will choose to breed on psychoactive mushrooms such as the Fly Agaric Amanita muscaria. Drosophila neotestacea can be found in temperate regions of North America, ranging from the north eastern United States to western Canada.

<i>Drosophila quinaria</i> species group Species group of the subgenus Drosophila

The Drosophila quinaria species group is a speciose lineage of mushroom-feeding flies studied for their specialist ecology, their parasites, population genetics, and the evolution of immune systems. Quinaria species are part of the Drosophila subgenus.

The DAF-12 gene encodes the nuclear receptor of dafachronic acid in the worm Caenorhabditis elegans, with the NRNC Symbol NR1J1 as the homolog of nuclear hormone receptor HR96 in Drosophila melanogaster. DAF-12 has been implicated by Cynthia Kenyon and colleagues in the formation of Dauer larva.

References

  1. 1 2 LPSN lpsn.dsmz.de
  2. Straininfo of Xenorhabdus koppenhoeferi
  3. UniProt
  4. Deutsche Sammlung von Mikroorganismen und Zellkulturen
  5. An, R; Grewal, PS (2016). "Comparative Analysis of Xenorhabdus koppenhoeferi Gene Expression during Symbiotic Persistence in the Host Nematode". PLOS ONE. 11 (1): e0145739. Bibcode:2016PLoSO..1145739A. doi:10.1371/journal.pone.0145739. PMC   4706420 . PMID   26745883.

Further reading