Xenorhabdus

Last updated

Xenorhabdus
Scientific classification OOjs UI icon edit-ltr.svg
Domain: Bacteria
Phylum: Pseudomonadota
Class: Gammaproteobacteria
Order: Enterobacterales
Family: Morganellaceae
Genus: Xenorhabdus
Thomas & Poinar, 1979
Species

Xenorhabdus beddingii
Xenorhabdus bovienii
Xenorhabdus budapestensis
Xenorhabdus cabanillasii
Xenorhabdus doucetiae
Xenorhabdus eapokensis [1]
Xenorhabdus ehlersii
Xenorhabdus griffiniae
Xenorhabdus hominickii
Xenorhabdus indica
Xenorhabdus innexi
Xenorhabdus ishibashii
Xenorhabdus japonica
Xenorhabdus khoisanae
Xenorhabdus koppenhoeferi
Xenorhabdus kozodoii
Xenorhabdus magdalenensis
Xenorhabdus mauleonii
Xenorhabdus miraniensis
Xenorhabdus nematophila
Xenorhabdus poinarii
Xenorhabdus romanii
Xenorhabdus stockiae
Xenorhabdus szentirmaii
Xenorhabdus thuongxuanensis [1]
Xenorhabdus vietnamensis

Contents

Xenorhabdus is a genus of motile, gram-negative bacteria from the family of the Morganellaceae. All the species of the genus are only known to live in symbiosis with soil entomopathogenic nematodes from the genus Steinernema . [2]

Although no free-living forms of Xenorhabdus have ever been isolated outside of the nematode host, the benefits for the bacteria are still unknown. However, it has been demonstrated that the nematode can't establish within its insect host without the bacteria. [3]

The tripartite Xenorhabdus-nematode-insect interaction represents a model system in which both mutualistic and pathogenic processes can be studied in a single bacterial species. In the laboratory, some species are virulent even when artificially injected into the insect host, whereas others species need the nematode to affect the insect. [3]

Lifecycle

  1. In the non-infestant-stage nematode living in the soil, Xenorhabdus spp. are carried in a specialized region of the intestine, termed the receptacle.
  2. At the third-stage of development, the infective juvenile (IJs) invade the hemocoel of susceptible insect hosts.
  3. The bacteria are released in the insect hemocoel, where they overcome the insect's defense systems and produce numerous virulence factors such as hemolysin and cytotoxin. They participate in suppressing insect immunity and killing the host.
  4. The bacteria proliferate to high levels in the insect cadaver and produce diverse antimicrobial compounds that suppress the growth of antagonistic microorganisms. Xenorhabdus spp. also secrete an array of exoenzymes that stimulate macromolecular degradation, the products of which, together with the bacteria themselves, are thought to provide a nutrient base for nematode growth and reproduction.
  5. When nematode numbers become high and nutrients become limiting in the insect cadaver, nematode progeny re-associate with bacteria and differentiate into colonized, non-feeding IJs that emerge into the soil to forage for new hosts.

Xenorhabdus, like Photorhabdus bacteria, has a striking feature of phase variation. Phase I variants are involved in the symbiotic relationship with entomopathogenic nematodes and are isolated from the nonfeeding infective stage nematodes and the body cavities of insects killed by these nematodes. No role in symbiosis has yet been determined for phase II, which is associated only with entomopathogenic nematodes under laboratory conditions. [4] [5]

Phylogeny

Biological pest control

The mutualistic association between Xenorhabdus and Steinernema represents an insecticidal complex, active against a large range of insect pests. Indeed, the complex is used in biological pest control, and is very efficient against insects such as Spodoptera exigua (Lepidoptera), Cydia pomonella (Lepidoptera), Leptinotarsa decemlineata (Coleoptera), family Tipulidae (Diptera). These bacteria inhabit the gut of the Asian corn borer, a moth pest of maize in East Asia, and kills it within 48 hours.

Xenorhabdus nematophila is the most widely used species in biological control, in association with Steinernema carpocapsae and S. feltiae .

The pathogenicity of the complex is "species-specific", which means that the complex can only be active against a specific range of insects.

The Steinernema-Xenorhabdus association is currently sold as a biocontrol agent by private companies, like Biobest, SUMI AGRO, e-nema and Biosafe.

Perspectives

A study carried out by Furgani G. & Al [6] suggests that the antibiotic compounds produced by Xenorhabdus to preserve the insect cadaver from others bacteria may be used in the aim of controlling mastitis caused by bacteria. Indeed, X. budapestensis, X. szentirmaii and X. nematophila appear to be efficient against pathogens such as Staphylococcus aureus and Escherichia coli .

Related Research Articles

<span class="mw-page-title-main">Endosymbiont</span> Organism that lives within the body or cells of another organism

An endosymbiont or endobiont is any organism that lives within the body or cells of another organism most often, though not always, in a mutualistic relationship. (The term endosymbiosis is from the Greek: ἔνδον endon "within", σύν syn "together" and βίωσις biosis "living".) Examples are nitrogen-fixing bacteria, which live in the root nodules of legumes, single-cell algae inside reef-building corals and bacterial endosymbionts that provide essential nutrients to insects.

<span class="mw-page-title-main">Entomopathogenic nematode</span> Group of thread worms that attack insects

Entomopathogenic nematodes (EPN) are a group of nematodes, that cause death to insects. The term entomopathogenic has a Greek origin, with entomon, meaning insect, and pathogenic, which means causing disease. They are animals that occupy a bio control middle ground between microbial pathogens and predator/parasitoids. Although many other parasitic thread worms cause diseases in living organisms, entomopathogenic nematodes are specific in only infecting insects. Entomopathogenic nematodes (EPNs) live parasitically inside the infected insect host, and so they are termed as endoparasitic. They infect many different types of insects living in the soil like the larval forms of moths, butterflies, flies and beetles as well as adult forms of beetles, grasshoppers and crickets. EPNs have been found all over the world in a range of ecologically diverse habitats. They are highly diverse, complex and specialized. The most commonly studied entomopathogenic nematodes are those that can be used in the biological control of harmful insects, the members of Steinernematidae and Heterorhabditidae. They are the only insect-parasitic nematodes possessing an optimal balance of biological control attributes.

<i>Photorhabdus luminescens</i> Species of bacterium

Photorhabdus luminescens is a Gammaproteobacterium of the family Morganellaceae, and is a lethal pathogen of insects.

<i>Heterorhabditis bacteriophora</i> Species of roundworm

Heterorhabditis bacteriophora is a species of entomopathogenic nematode known commonly as beneficial nematodes. They are microscopic and are used in gardening as a form of biological pest control. They are used to control ants, fleas, moths, beetles, flies, weevils, and other pests.

Photorhabdus is a genus of bioluminescent, gram-negative bacilli which lives symbiotically within entomopathogenic nematodes, hence the name photo and rhabdus. Photorhabdus is known to be pathogenic to a wide range of insects and has been used as biopesticide in agriculture.

Photorhabdus temperata is a species of bacteria. It has been divided into 6 subspecies. It is pathogenic to certain insects.

<i>Heterorhabditis megidis</i> Species of roundworm

Heterorhabditis megidis is a species of nematodes in the genus Heterorhabditis. All species of this genus are obligate parasites of insects, and some are used as biological control agents for the control of pest insects.

<span class="mw-page-title-main">Xenortide</span>

The xenortides (A-D) are a class of linear peptides isolated from the bacterium Xenorhabdus nematophila, a symbiont of the entomopathogenic nematode Steinernema carpocapsae. This class of compounds is known for their insect virulence and cytotoxic biological activities. The tryptamide containing compounds show higher biological activity than the phenylethylamides. The most biologically active compound was found to be xenortide B with a potency of less than 1.6 μM activity against Trypanosoma brucei rhodesiense and Plasmodium falciparum (malaria), however it is also the most toxic to mammalian cells which limits its viability as a treatment.

Xenorhabdus ehlersii is a bacterium from the genus of Xenorhabdus which has been isolated from the nematode Steinernema serratum in China.

Xenorhabdus bovienii is a bacterium from the genus of Xenorhabdus which has been isolated from the nematodes Steinernema bibionis, Steinernema krsussei, Steinernema affine, Steinernema carpocapsae, Steinernema feltiae, Steinernema intermedium, Steinernema jollieti and Steinernema weiseri. Xenorhabdus bovienii produces N-Butanoylpyrrothine, N-(3-Methylbutanoyl)pyrrothine and Xenocyloins.

Xenorhabdus griffiniae is a bacterium from the genus of Xenorhabdus which has been isolated from the nematode Steinernema hermaphroditum in Indonesia.

Xenorhabdus indica is a bacterium from the genus of Xenorhabdus which has been isolated from the nematodes Steinernema thermophilum and Steinernema yirgalemense. Xenorhabdus indica produces the Taxlllaids A–G.

Xenorhabdus khoisanae is a bacterium from the genus Xenorhabdus which has been isolated from the nematode Steinernema khoisanae in the Western Cape Province in South Africa.

Xenorhabdus szentirmaii is a bacterium from the genus Xenorhabdus which has been isolated from the nematode Steinernema rarum in Argentina. Xenorhabdus szentirmaii produces szentiamide, xenematide, bicornutin A xenofuranone A and xenofuranone B.

Xenorhabdus poinarii is a bacterium from the genus Xenorhabdus which has been isolated from the nematodes Steinernema glaseri and Steinernema cubanum.

<i>Steinernema carpocapsae</i> Species of roundworm

Steinernema carpocapsae is an entomopathogenic nematode and a member of the family Steinernematidae. It is a parasitic roundworm that has evolved an insect-killing symbiosis with bacteria, and kills its hosts within a few days of infection. This parasite releases its bacterial symbiont along with a variety of proteins into the host after infection, and together the bacteria and nematode overcome host immunity and kill the host quickly. As a consequence, S. carpocapsae has been widely adapted for use as a biological control agent in agriculture and pest control. S. carpocapsae is considered a generalist parasite and has been effectively used to control a variety of insects including: Webworms, cutworms, armyworms, girdlers, some weevils, and wood-borers. This species is an example of an "ambush" forager, standing on its tail in an upright position near the soil surface and attaching to passing hosts, even capable of jumping. As an ambush forager, S. carpocapsae is thought to be especially effective when applied against highly mobile surface-adapted insects. S. carpocapsae can sense carbon dioxide production, making the spiracles a key portal of entry into its insect hosts. It is most effective at temperatures ranging from 22–28 °C (72–82 °F).

The Steinernematidae are a family of nematodes in the order Rhabditida.

<i>Steinernema</i> Genus of roundworms

Steinernema is a genus of nematodes in the family of Steinernematidae. The genus Steinernema is named after the nematologist Gotthold Steiner.

<span class="mw-page-title-main">Morganellaceae</span> Family of bacteria

The Morganellaceae are a family of Gram-negative bacteria that include some important human pathogens formerly classified as Enterobacteriaceae. This family is a member of the order Enterobacterales in the class Gammaproteobacteria of the phylum Pseudomonadota. Genera in this family include the type genus Morganella, along with Arsenophonus, Cosenzaea, Moellerella, Photorhabdus, Proteus, Providencia and Xenorhabdus.

Necromeny is a symbiotic relationship where an animal infects a host and waits inside its body until its death, at which point it develops and completes its life-cycle on the cadaver, feeding on the decaying matter and the subsequent bacterial growth. As the necromenic animal benefits from the relationship while the host is unharmed, it is an example of commensalism.

References

As of this edit, this article uses content from "The Entomopathogenic Bacterial Endosymbionts Xenorhabdus and Photorhabdus: Convergent Lifestyles from Divergent Genomes" , which is licensed in a way that permits reuse under the Creative Commons Attribution-ShareAlike 3.0 Unported License, but not under the GFDL. All relevant terms must be followed.

  1. 1 2 Kämpfer, P; Tobias, NJ; Ke, LP; Bode, HB; Glaeser, SP (May 2017). "Xenorhabdus thuongxuanensis sp. nov. and Xenorhabdus eapokensis sp. nov., isolated from Steinernema species". International Journal of Systematic and Evolutionary Microbiology. 67 (5): 1107–1114. doi: 10.1099/ijsem.0.001770 . PMID   28056225.
  2. John M. Chaston; Garret Suen; Sarah L. Tucker; Aaron W. Andersen; Archna Bhasin; Edna Bode; Helge B. Bode; Alexander O. Brachmann; et al. (2011-11-18). "The Entomopathogenic Bacterial Endosymbionts Xenorhabdus and Photorhabdus: Convergent Lifestyles from Divergent Genomes". PLOS ONE. 6 (11): e27909. Bibcode:2011PLoSO...627909C. doi: 10.1371/journal.pone.0027909 . PMC   3220699 . PMID   22125637.
  3. 1 2 Gaudriault S., Ogier J.C.; Pagès S.; Bisch G.; Chiapello H.; Médigue C.; Rouy Z.; Teyssier C.; Vincent S.; Tailliez P.; Guivaudan A. (2014-07-25). "Attenued Virulence And Genomic Reductive Evolution In The Entomopathogenic Bacterial Symbiont Species, Xenorhabdus poinarii". Genome Biology and Evolution. 6 (6): 1495–1513. doi:10.1093/gbe/evu119. PMC   4079199 . PMID   24904010.
  4. Kaya, H. K; Gaugler, R. 1993. Entomopathogenic nematodes. Annual Review of Entomology, 38: 181-206.
  5. Peel, Margaret; Alfredson, David; Gerrard, John; Davis, Jennifer; Robson, Jennifer; McDougall, Rodney; Scullie, Barry; Akhurst, Raymond (1999). "Isolation, Identification, and Molecular Characterization of Strains of Photorhabdus luminescens from Infected Humans in Australia". Journal of Clinical Microbiology. 37 (11): 3647–3653. doi:10.1128/JCM.37.11.3647-3653.1999. PMC   85716 . PMID   10523568.
  6. Wolf S.L., Furgani G.; Böszörményi E.; Fodor A.; Máthé-Fodor A.; Forst S.; Hogan J.S.; Katona Z.; Klein M.G.; Stackebrandt E.; Szentirmai A.; Sztaricskai F. (2007-08-25). "Xenorhabdus Antibiotics: a comparative analysis and potential utility for controlling mastisis caused by bacteria". Journal of Applied Microbiology. 104 (2008): 745–758. doi:10.1111/j.1365-2672.2007.03613.x. PMID   17976177. S2CID   20497283.

Bibliography