Yellow-band disease

Last updated
Samples of yellow-band disease. Left: a coral in the early stages of an attack. Right: same coral several weeks later Yellow-band disease.jpg
Samples of yellow-band disease. Left: a coral in the early stages of an attack. Right: same coral several weeks later

Yellow-band disease (similar to Yellow Blotch disease) [1] is a coral disease that attacks colonies of coral at a time when coral is already under stress from pollution, overfishing, and climate change. [2] It is characterized by large blotches or patches of bleached, yellowed tissue on Caribbean scleractinian corals. [3]

Contents

Yellow-band disease is a bacterial infection that spreads over coral, causing the discolored bands of pale-yellow or white lesions along the surface of an infected coral colony. The lesions are the locations where the bacteria have killed the coral's symbiotic photosynthetic algae, called zooxanthellae which are a major energy source for the coral. [4] This cellular damage and the loss of its major energy source cause the coral to starve, and usually cause coral death. There is evidence that climate change could be worsening the disease. [5]

Mechanism of action

Coral has a symbiotic relationship with zooxanthellae that provide the coral glucose, glycerol, and amino acids. Under certain water conditions, like fluctuating temperatures and increased nitrogenous waste, corals will appear stressed. Also, these conditions allow for bacteria to grow inside the coral and compete with zooxanthellae. The bacteria produces the characteristic pale yellow lesions and eventually kills the zooxanthellae by impairing its mitosis and its ability to carry out photosynthesis. Yellow-band disease is found on coral reefs in the Caribbean. [6]

Impact

Yellow-band disease has severely affected reef building corals in the Caribbean. This disease have been associated with lower coral fecundity, [7] altered tissue composition [8] and a lower activities of antixenobiotic and antioxidant enzymes. [9] Compared to the late 1990s, current data suggests that the disease remains a severe epidemic. In one study, 10 meter belt transects were taken at various depths, sampling coral colonies in the Lesser Antilles. At a depth of 5 m, yellow band rings and lesions were found on 79% of the colonies per transect, and only 21% of the colonies in this depth range appeared healthy. [10]

Recent research indicates that yellow-band disease continues to be in an infectious phases in the Caribbean. It has been found to cause infection in Pacific coral as well. [10]

See also

Notes

  1. Yellow-blotch/Yellow-band Disease
  2. "yellow band disease News - insciences". insciences.org. Retrieved 2009-10-28.
  3. "Common Identified Coral Diseases". www.artificialreefs.org. Retrieved 2009-10-28.
  4. "NOAA National Ocean Service Education: Example of yellow band disease". oceanservice.noaa.gov. Retrieved 2009-10-28.
  5. "Yellow band disease is spreading". X-Ray International Dive Magazine. www.xray-mag.com. Retrieved 2009-10-28.
  6. Holzman, David. "Vibrio Consortia, Warming Seas Aggravate Yellow Band Disease in Corals". www.microbemagazine.org. Retrieved 2009-10-28.
  7. Weil, E; Cróquer, A; Urreiztieta, I (16 November 2009). "Yellow band disease compromises the reproductive output of the Caribbean reef-building coral Montastraea faveolata (Anthozoa, Scleractinia)". Diseases of Aquatic Organisms. 87 (1–2): 45–55. doi: 10.3354/dao02103 . PMID   20095240.
  8. Guerra, M; López, Ma; Estéves, I; Zubillaga, Al; Cróquer, A (16 January 2014). "Fourier-transformed infrared spectroscopy: a tool to identify gross chemical changes from healthy to yellow band disease tissues". Diseases of Aquatic Organisms. 107 (3): 249–258. doi: 10.3354/dao02680 . PMID   24429476.
  9. Montilla, Lm; Ramos, R; García, E; Cróquer, A (3 May 2016). "Caribbean yellow band disease compromises the activity of catalase and glutathione S-transferase in the reef-building coral Orbicella faveolata exposed to anthracene". Diseases of Aquatic Organisms. 119 (2): 153–161. doi:10.3354/dao02980. PMID   27137073.
  10. 1 2 Donà, A. Richards; Cervino, J.M.; Goreau, T.J.; Bartels, E.; Hughen, K.; Smith, G.W.; Donà, A. (July 2008). Coral Yellow Band Disease; Current Status in The Caribbean, Outbreaks And The Links To New Indo-Pacific Lesions (PDF). Proceedings of the 11th International Coral Reef Symposium. Ft. Lauderdale, Florida.

Related Research Articles

<span class="mw-page-title-main">Coral</span> Marine invertebrates of the class Anthozoa

Corals are colonial marine invertebrates within the class Anthozoa of the phylum Cnidaria. They typically form compact colonies of many identical individual polyps. Coral species include the important reef builders that inhabit tropical oceans and secrete calcium carbonate to form a hard skeleton.

<span class="mw-page-title-main">Coral reef</span> Outcrop of rock in the sea formed by the growth and deposit of stony coral skeletons

A coral reef is an underwater ecosystem characterized by reef-building corals. Reefs are formed of colonies of coral polyps held together by calcium carbonate. Most coral reefs are built from stony corals, whose polyps cluster in groups.

<span class="mw-page-title-main">Vibrionaceae</span> Family of bacteria

The Vibrionaceae are a family of Pseudomonadota given their own order, Vibrionales. Inhabitants of fresh or salt water, several species are pathogenic, including the type species Vibrio cholerae, which is the agent responsible for cholera. Most bioluminescent bacteria belong to this family, and are typically found as symbionts of deep-sea animals.

<span class="mw-page-title-main">White band disease</span> Disease affecting marine corals

White band disease is a coral disease that affects acroporid corals and is distinguishable by the white band of exposed coral skeleton that it forms. The disease completely destroys the coral tissue of Caribbean acroporid corals, specifically elkhorn coral and staghorn coral. The disease exhibits a pronounced division between the remaining coral tissue and the exposed coral skeleton. These symptoms are similar to white plague, except that white band disease is only found on acroporid corals, and white plague has not been found on any acroporid corals. It is part of a class of similar disease known as "white syndromes", many of which may be linked to species of Vibrio bacteria. While the pathogen for this disease has not been identified, Vibrio carchariae may be one of its factors. The degradation of coral tissue usually begins at the base of the coral, working its way up to the branch tips, but it can begin in the middle of a branch.

<span class="mw-page-title-main">Elkhorn coral</span> Species of coral

Elkhorn coral is an important reef-building coral in the Caribbean. The species has a complex structure with many branches which resemble that of elk antlers; hence, the common name. The branching structure creates habitat and shelter for many other reef species. Elkhorn coral is known to grow quickly with an average growth rate of 5 to 10 cm per year. They can reproduce both sexually and asexually, though asexual reproduction is much more common and occurs through a process called fragmentation.

Skeletal eroding band (SEB) is a disease of corals that appears as a black or dark gray band that slowly advances over corals, leaving a spotted region of dead coral in its wake. It is the most common disease of corals in the Indian and Pacific Oceans, and is also found in the Red Sea.

Halofolliculina corallasia is a species of heterotrich ciliates identified as a cause of the syndrome called skeletal eroding band (SEB). It is the first coral disease pathogen that is a protozoan as well as the first known to be a eukaryote; all others identified are bacteria. Like other members of the folliculinid family, H. corallasia is sessile and lives in a "house" called a lorica, into which the cell can retreat when disturbed. The mouth is flanked by a pair of wing-like projections that are fringed with polykinetids, groups of cilia that work in groups to produce a current that draws food into the "mouth".

<span class="mw-page-title-main">White pox disease</span> Disease of coral

White pox disease, first noted in 1996 on coral reefs near the Florida keys, is a coral disease affecting Elkhorn coral throughout the Caribbean. It causes irregular white patches or blotches on the coral that result from the loss of coral tissue. These patches distinguish white pox disease from white band disease which produces a distinctive white band where the coral skeleton has been denuded. The blotches caused by this disease are also clearly differentiated from coral bleaching and scars caused by coral-eating snails. It is very contagious, spreading to nearby coral.

<span class="mw-page-title-main">Thiosulfate–citrate–bile salts–sucrose agar</span>

Thiosulfate–citrate–bile salts–sucrose agar, or TCBS agar, is a type of selective agar culture plate that is used in microbiology laboratories to isolate Vibrio species. TCBS agar is highly selective for the isolation of V. cholerae and V. parahaemolyticus as well as other Vibrio species. Apart from TCBS agar, other rapid testing dipsticks like immunochromatographic dipstick is also used in endemic areas such as Asia, Africa and Latin America. Though, TCBS agar study is required for confirmation. This becomes immensely important in cases of gastroenteritis caused by campylobacter species, whose symptoms mimic that of cholera. Since no yellow bacterial growth is observed in case of campylobacter species on TCBS agar, chances of incorrect diagnosis can be rectified. TCBS agar contains high concentrations of sodium thiosulfate and sodium citrate to inhibit the growth of Enterobacteriaceae. Inhibition of gram-positive bacteria is achieved by the incorporation of ox gall, which is a naturally occurring substance containing a mixture of bile salts and sodium cholate, a pure bile salt. Sodium thiosulfate also serves as a sulfur source and its presence, in combination with ferric citrate, allows for the easy detection of hydrogen sulfide production. Saccharose (sucrose) is included as a fermentable carbohydrate for metabolism by Vibrio species. The alkaline pH of the medium enhances the recovery of V. cholerae and inhibits the growth of others. Thymol blue and bromothymol blue are included as indicators of pH changes.

<span class="mw-page-title-main">Environmental issues with coral reefs</span> Factors which adversely affect tropical coral reefs

Human activities have substantial impact on coral reefs, contributing to their worldwide decline.[1] Damaging activities encompass coral mining, pollution, overfishing, blast fishing, as well as the excavation of canals and access points to islands and bays. Additional threats comprise disease, destructive fishing practices, and the warming of oceans.[2] Furthermore, the ocean's function as a carbon dioxide sink, alterations in the atmosphere, ultraviolet light, ocean acidification, viral infections, the repercussions of dust storms transporting agents to distant reefs, pollutants, and algal blooms represent some of the factors exerting influence on coral reefs. Importantly, the jeopardy faced by coral reefs extends far beyond coastal regions. The ramifications of climate change, notably global warming, induce an elevation in ocean temperatures that triggers coral bleaching—a potentially lethal phenomenon for coral ecosystems.

The resilience of coral reefs is the biological ability of coral reefs to recover from natural and anthropogenic disturbances such as storms and bleaching episodes. Resilience refers to the ability of biological or social systems to overcome pressures and stresses by maintaining key functions through resisting or adapting to change. Reef resistance measures how well coral reefs tolerate changes in ocean chemistry, sea level, and sea surface temperature. Reef resistance and resilience are important factors in coral reef recovery from the effects of ocean acidification. Natural reef resilience can be used as a recovery model for coral reefs and an opportunity for management in marine protected areas (MPAs).

<i>Colpophyllia</i> Genus of corals

Colpophyllia is a genus of stony corals in the family Mussidae. It is monotypic with a single species, Colpophyllia natans, commonly known as boulder brain coral or large-grooved brain coral. It inhabits the slopes and tops of reefs, to a maximum depth of fifty metres. It is characterised by large, domed colonies, which may be up to two metres across, and by the meandering network of ridges and valleys on its surface. The ridges are usually brown with a single groove, and the valleys may be tan, green, or white and are uniform in width, typically 2 centimetres. The polyps only extend their tentacles at night.

<i>Orbicella faveolata</i> Species of coral

Orbicella faveolata, commonly known as mountainous star coral, is a colonial stony coral in the family Merulinidae. Orbicella faveolata is native to the coral coast of the Caribbean Sea and the Gulf of Mexico and is listed as "endangered" by the International Union for Conservation of Nature. O. faveolata was formerly known as Montastraea faveolata.

<i>Orbicella franksi</i> Species of coral

Orbicella franksi, commonly known as boulder star coral, is a colonial stony coral in the family Merulinidae. It is native to shallow waters in the Caribbean Sea, the Gulf of Mexico, the Bahamas, Bermuda and Florida, and is listed as a "vulnerable species" by the International Union for Conservation of Nature.

<i>Astrangia poculata</i> Species of coral

Astrangia poculata, the northern star coral or northern cup coral, is a species of non-reefbuilding stony coral in the family Rhizangiidae. It is native to shallow water in the western Atlantic Ocean and the Caribbean Sea. It is also found on the western coast of Africa. The International Union for Conservation of Nature lists this coral as being of "least concern". Astrangia poculata is an emerging model organism for corals because it harbors a facultative photosymbiosis, is a calcifying coral, and has a large geographic range. Research on this emerging model system is showcased annually by the Astrangia Research Working Group, collaboratively hosted by Roger Williams University, Boston University, and Southern Connecticut State University

<span class="mw-page-title-main">Marine microbial symbiosis</span>

Microbial symbiosis in marine animals was not discovered until 1981. In the time following, symbiotic relationships between marine invertebrates and chemoautotrophic bacteria have been found in a variety of ecosystems, ranging from shallow coastal waters to deep-sea hydrothermal vents. Symbiosis is a way for marine organisms to find creative ways to survive in a very dynamic environment. They are different in relation to how dependent the organisms are on each other or how they are associated. It is also considered a selective force behind evolution in some scientific aspects. The symbiotic relationships of organisms has the ability to change behavior, morphology and metabolic pathways. With increased recognition and research, new terminology also arises, such as holobiont, which the relationship between a host and its symbionts as one grouping. Many scientists will look at the hologenome, which is the combined genetic information of the host and its symbionts. These terms are more commonly used to describe microbial symbionts.

<i>Orbicella</i> Genus of corals

Orbicella is a genus of stony corals in the Merulinidae family. The Orbicella species complex comprises three sister species, namely Orbicella faveolata, Orbicella annularis and Orbicella franksi, all of which are shallow-water, zooxanthellate species and are native to the tropical western Atlantic Ocean, the Caribbean Sea and the Gulf of Mexico.

<span class="mw-page-title-main">Corallivore</span> Animal that feeds on coral

A corallivore is an animal that feeds on coral. Corallivores are an important group of reef organism because they can influence coral abundance, distribution, and community structure. Corallivores feed on coral using a variety of unique adaptations and strategies. Known corallivores include certain mollusks, annelids, fish, crustaceans, flatworms and echinoderms. The first recorded evidence of corallivory was presented by Charles Darwin in 1842 during his voyage on HMS Beagle in which he found coral in the stomach of two Scarus parrotfish.

Coral diseases are transmissible pathogens that cause the degradation of coral colonies. Coral cover in reef ecosystems has decreased significantly for a diverse set of reasons, ranging from variable environmental conditions to mechanical breakdowns from storms. In recent years, diseases that infect and kill coral have shown to be a threat to the health of coral reefs. Since the first coral disease was reported in 1965, many different kinds of diseases have popped up in mostly Caribbean waters. These diseases are diverse, including pathogens of bacteria, fungi, viruses, and protozoans. Coral diseases have widespread implications, impacting entire ecosystems and communities of organisms. Researchers are working to understand these diseases, and how potential treatments could stop these pathogens from causing the widespread death of corals in a way that permanently impacts the community structure of reefs.

<span class="mw-page-title-main">Stony coral tissue loss disease</span> Disease affecting corals

Stony coral tissue loss disease (SCTLD) is a disease of corals that first appeared off the southeast coast of Florida in 2014. It originally was described as white plague disease. By 2019 it had spread along the Florida Keys and had appeared elsewhere in the Caribbean Sea. The disease destroys the soft tissue of at least 22 species of reef-building corals, killing them within weeks or months of becoming infected. The causal agent is unknown but is suspected to be either a bacterium or a virus with a bacterium playing a secondary role. The degree of susceptibility of a coral, the symptoms, and the rate of progression of the disease vary between species. Due to its rapid spread, high mortality rate, and lack of subsidence, it has been regarded as the deadliest coral disease ever recorded, with wide-ranging implications for the biodiversity of Caribbean coral reefs.