Actinium oxyfluoride

Last updated
Actinium oxyfluoride
Identifiers
3D model (JSmol)
  • InChI=1S/Ac.FH.O/h;1H;/q+3;;-2/p-1
    Key: LHOIFNAUSIZYHZ-UHFFFAOYSA-M
  • [Ac+3].[F-].[O-2]
Properties
AcOF
Molar mass 262.03
Appearancesolid
Density 8.280 g·cm−1 [1]
Structure [2]
cubic
a = 0.5931 nm
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).

Actinium oxyfluoride is an inorganic compound, with the chemical formula AcOF. It is radioactive. It crystallises in a calcium fluoride structure. [3] It can be obtained by reacting actinium fluoride with ammonia and water: [4]

AcF3 + 2 NH3 + H2O → AcOF + 2 NH4F [lower-greek 1]

The reaction proceeds completely at 1200 °C, and unreacted AcF3 will remain at lower temperatures. [5]

Notes

  1. Ammonium fluoride decomposes into NH3 and HF at high temperature and recombines at low temperature

Related Research Articles

<span class="mw-page-title-main">Actinium</span> Chemical element, symbol Ac and atomic number 89

Actinium is a chemical element with the symbol Ac and atomic number 89. It was first isolated by Friedrich Oskar Giesel in 1902, who gave it the name emanium; the element got its name by being wrongly identified with a substance André-Louis Debierne found in 1899 and called actinium. Actinium gave the name to the actinide series, a set of 15 elements between actinium and lawrencium in the periodic table. Together with polonium, radium, and radon, actinium was one of the first non-primordial radioactive elements to be isolated.

<span class="mw-page-title-main">Protactinium</span> Chemical element, symbol Pa and atomic number 91

Protactinium is a radioactive chemical element with the symbol Pa and atomic number 91. It is a dense, silvery-gray actinide metal which readily reacts with oxygen, water vapor and inorganic acids. It forms various chemical compounds in which protactinium is usually present in the oxidation state +5, but it can also assume +4 and even +3 or +2 states. Concentrations of protactinium in the Earth's crust are typically a few parts per trillion, but may reach up to a few parts per million in some uraninite ore deposits. Because of its scarcity, high radioactivity and high toxicity, there are currently no uses for protactinium outside scientific research, and for this purpose, protactinium is mostly extracted from spent nuclear fuel.

Tungsten(VI) fluoride, also known as tungsten hexafluoride, is an inorganic compound with the formula WF6. It is a toxic, corrosive, colorless gas, with a density of about 13 kg/m3 (22 lb/cu yd) (roughly 11 times heavier than air). It is one of the densest known gases under standard conditions. WF6 ls commonly used by the semiconductor industry to form tungsten films, through the process of chemical vapor deposition. This layer is used in a low-resistivity metallic "interconnect". It is one of seventeen known binary hexafluorides.

Boron trifluoride is the inorganic compound with the formula BF3. This pungent, colourless, and toxic gas forms white fumes in moist air. It is a useful Lewis acid and a versatile building block for other boron compounds.

<span class="mw-page-title-main">Iron(II) fluoride</span> Chemical compound

Iron(II) fluoride or ferrous fluoride is an inorganic compound with the molecular formula FeF2. It forms a tetrahydrate FeF2·4H2O that is often referred to by the same names. The anhydrous and hydrated forms are white crystalline solids.

<span class="mw-page-title-main">Iron(III) fluoride</span> Chemical compound

Iron(III) fluoride, also known as ferric fluoride, are inorganic compounds with the formula FeF3(H2O)x where x = 0 or 3. They are mainly of interest by researchers, unlike the related iron(III) chlorides. Anhydrous iron(III) fluoride is white, whereas the hydrated forms are light pink.

<span class="mw-page-title-main">Potassium hexafluoronickelate(IV)</span> Chemical compound

Potassium hexafluoronickelate(IV) is an inorganic compound with the chemical formula K
2
NiF
6
. It can be produced through the reaction of potassium fluoride, nickel dichloride, and fluorine.

<span class="mw-page-title-main">Rhodium hexafluoride</span> Chemical compound with formula RhF₆

Rhodium hexafluoride, also rhodium(VI) fluoride, (RhF6) is the inorganic compound of rhodium and fluorine. A black volatile solid, it is a highly reactive material, and a rare example of a rhodium(VI) compound. It is one of seventeen known binary hexafluorides.

<span class="mw-page-title-main">Monofluorophosphate</span> Chemical compound

Monofluorophosphate is an anion with the formula PO3F2−, which is a phosphate group with one oxygen atom substituted with a fluoride atom. The charge of the ion is −2. The ion resembles sulfate in size, shape and charge, and can thus form compounds with the same structure as sulfates. These include Tutton's salts and langbeinites. The most well-known compound of monofluorophosphate is sodium monofluorophosphate, commonly used in toothpaste.

<span class="mw-page-title-main">Actinium(III) fluoride</span> Chemical compound

Actinium(III) fluoride (AcF3) is an inorganic compound, a salt of actinium and fluorine.

Gadolinium(III) fluoride is an inorganic compound with a chemical formula GdF3.

<span class="mw-page-title-main">Neptunium(III) chloride</span> Chemical compound

Neptunium(III) chloride or neptunium trichloride is an inorganic compound with a chemical formula NpCl3. This salt is strongly radioactive.

<span class="mw-page-title-main">Nickel(II) perchlorate</span> Compound of nickel

Nickel(II) perchlorate is a inorganic compound with the chemical formula of Ni(ClO4)2, and it is a strong oxidizing agent. Its colours are different depending on water. For example, the hydrate forms cyan crystals, the pentahydrate forms green crystals, but the hexahydrate (Ni(ClO4)2·6H2O) forms blue crystals.

<span class="mw-page-title-main">Europium compounds</span> Chemical compounds with at least one europium atom

Europium compounds are compounds formed by the lanthanide metal europium (Eu). In these compounds, europium generally exhibits the +3 oxidation state, such as EuCl3, Eu(NO3)3 and Eu(CH3COO)3. Compounds with europium in the +2 oxidation state are also known. The +2 ion of europium is the most stable divalent ion of lanthanide metals in aqueous solution. Many europium compounds fluoresce under ultraviolet light due to the excitation of electrons to higher energy levels. Lipophilic europium complexes often feature acetylacetonate-like ligands, e.g., Eufod.

<span class="mw-page-title-main">Terbium compounds</span> Chemical compounds with at least one terbium atom

Terbium compounds are compounds formed by the lanthanide metal terbium (Tb). Terbium generally exhibits the +3 oxidation state in these compounds, such as in TbCl3, Tb(NO3)3 and Tb(CH3COO)3. Compounds with terbium in the +4 oxidation state are also known, such as TbO2 and BaTbF6. Terbium can also form compounds in the 0, +1 and +2 oxidation states.

Cobalt compounds are chemical compounds formed by cobalt with other elements. In the compound, the most stable oxidation state of cobalt is the +2 oxidation state, and in the presence of specific ligands, there are also stable compounds with +3 valence. In addition, there are cobalt compounds in high oxidation states +4, +5 and low oxidation states -1, 0, +1.

Erbium compounds are compounds containing the element erbium (Er). These compounds are usually dominated by erbium in the +3 oxidation state, although the +2, +1 and 0 oxidation states have also been reported.

Actinium compounds are compounds containing the element actinium (Ac). Due to actinium's intense radioactivity, only a limited number of actinium compounds are known. These include: AcF3, AcCl3, AcBr3, AcOF, AcOCl, AcOBr, Ac2S3, Ac2O3, AcPO4 and Ac(NO3)3. Except for AcPO4, they are all similar to the corresponding lanthanum compounds. They all contain actinium in the oxidation state +3. In particular, the lattice constants of the analogous lanthanum and actinium compounds differ by only a few percent.

Thorium oxyfluoride is an inorganic compound of thorium metal, fluorine, and oxygen with the chemical formula ThOF
2
.

<span class="mw-page-title-main">Ytterbium(II) fluoride</span> Chemical compound

Ytterbium(II) fluoride is a binary inorganic compound of ytterbium and fluorine with the chemical formula YbF2.

References

  1. Yaws, C. (2015). The Yaws Handbook of Physical Properties for Hydrocarbons and Chemicals: Physical Properties for More Than 54,000 Organic and Inorganic Chemical Compounds, Coverage for C1 to C100 Organics and Ac to Zr Inorganics. Elsevier Science. p. 685. ISBN   978-0-12-801146-1. Archived from the original on 2022-02-02. Retrieved 2022-02-01.
  2. Perry, D.L. (2016). Handbook of Inorganic Compounds. CRC Press. p. 527. ISBN   978-1-4398-1462-8. Archived from the original on 2022-02-02. Retrieved 2022-02-01.
  3. 无机化学丛书 第十卷 锕系 锕系后元素. 科学出版社. pp 92-93. 5. 卤氧化物
  4. Sherman Fried, French Hagemann, W. H. Zachariasen (Feb 1950). "The Preparation and Identification of Some Pure Actinium Compounds 1". Journal of the American Chemical Society. 72 (2): 771–775. doi:10.1021/ja01158a034. ISSN   0002-7863. Archived from the original on 2022-01-23. Retrieved 2022-02-01.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  5. W. H. Zachariasen (1951-05-01). "Crystal chemical studies of the 5 f -series of elements. XIV. Oxyfluorides, X OF". Acta Crystallographica. 4 (3): 231–236. doi:10.1107/S0365110X51000787. ISSN   0365-110X. Archived from the original on 2022-06-18. Retrieved 2022-02-01.