Chlorosyl fluoride

Last updated
Chlorosyl fluoride
Chlorosyl fluoride.svg
Identifiers
3D model (JSmol)
ChEBI
ChemSpider
PubChem CID
  • InChI=1S/ClFO/c2-1-3
    Key: AXCBHWGTRNNXKG-UHFFFAOYSA-N
  • O=ClF
Properties
ClFO
Molar mass 70.45 g·mol−1
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).

Chlorosyl fluoride is an inorganic compound of chlorine, fluorine, and oxygen with the chemical formula OClF. [1] [2] [3]

Contents

Synthesis

Chemical properties

Chlorosyl fluoride is thermolabile and disproportionates to ClF and ClO
2
F
.: [4]

2FClO → ClF + FClO2
2FClO → 2ClF +O2

Related Research Articles

<span class="mw-page-title-main">Chlorine</span> Chemical element, symbol Cl and atomic number 17

Chlorine is a chemical element; it has symbol Cl and atomic number 17. The second-lightest of the halogens, it appears between fluorine and bromine in the periodic table and its properties are mostly intermediate between them. Chlorine is a yellow-green gas at room temperature. It is an extremely reactive element and a strong oxidising agent: among the elements, it has the highest electron affinity and the third-highest electronegativity on the revised Pauling scale, behind only oxygen and fluorine.

In chemistry, an interhalogen compound is a molecule which contains two or more different halogen atoms and no atoms of elements from any other group.

Chlorine trifluoride is an interhalogen compound with the formula ClF3. It is a colorless, poisonous, corrosive, and extremely reactive gas that condenses to a pale-greenish yellow liquid, the form in which it is most often sold. It is famous for its extreme oxidation properties. The compound is primarily of interest in plasmaless cleaning and etching operations in the semiconductor industry, in nuclear reactor fuel processing, historically as a component in rocket fuels, and various other industrial operations owing to its corrosive nature.

<span class="mw-page-title-main">Oxygen fluoride</span> Any binary compound of oxygen and fluorine

Oxygen fluorides are compounds of elements oxygen and fluorine with the general formula OnF2, where n = 1 to 6. Many different oxygen fluorides are known:

<span class="mw-page-title-main">Chlorine pentafluoride</span> Chemical compound

Chlorine pentafluoride is an interhalogen compound with formula ClF5. This colourless gas is a strong oxidant that was once a candidate oxidizer for rockets. The molecule adopts a square pyramidal structure with C4v symmetry, as confirmed by its high-resolution 19F NMR spectrum. It was first synthesized in 1963.

<span class="mw-page-title-main">Chlorine monofluoride</span> Chemical compound

Chlorine monofluoride is a volatile interhalogen compound with the chemical formula ClF. It is a colourless gas at room temperature and is stable even at high temperatures. When cooled to −100 °C, ClF condenses as a pale yellow liquid. Many of its properties are intermediate between its parent halogens, Cl2 and F2.

<span class="mw-page-title-main">Bromine trifluoride</span> Chemical compound

Bromine trifluoride is an interhalogen compound with the formula BrF3. At room temperature, it is a straw-coloured liquid with a pungent odor which decomposes violently on contact with water and organic compounds. It is a powerful fluorinating agent and an ionizing inorganic solvent. It is used to produce uranium hexafluoride (UF6) in the processing and reprocessing of nuclear fuel.

<span class="mw-page-title-main">Cobalt(III) fluoride</span> Chemical compound

Cobalt(III) fluoride is the inorganic compound with the formula CoF3. Hydrates are also known. The anhydrous compound is a hygroscopic brown solid. It is used to synthesize organofluorine compounds.

<span class="mw-page-title-main">Chloryl fluoride</span> Chemical compound

Chloryl fluoride is the chemical compound with the formula ClO2F. It is commonly encountered as side-product in reactions of chlorine fluorides with oxygen sources. It is the acyl fluoride of chloric acid.

<span class="mw-page-title-main">Thiazyl fluoride</span> Chemical compound

Thiazyl fluoride, NSF, is a colourless, pungent gas at room temperature and condenses to a pale yellow liquid at 0.4 °C. Along with thiazyl trifluoride, NSF3, it is an important precursor to sulfur-nitrogen-fluorine compounds. It is notable for its extreme hygroscopicity.

<span class="mw-page-title-main">Chloryl</span> Ion

In chemistry, chloryl refers to a triatomic cation with chemical formula ClO+
2
. This species has the same general structure as chlorite (ClO
2
) but it is electronically different, with chlorine having a +5 oxidation state (rather than the +3 of chlorite). This makes it a rare example of a positively charged oxychloride. Chloryl compounds, such as FClO
2
and [ClO2][RuF6], are all highly reactive and react violently with water and most organic compounds.

Boron monofluoride or fluoroborylene is a chemical compound with the formula BF, one atom of boron and one of fluorine. It is an unstable gas, but it is a stable ligand on transition metals, in the same way as carbon monoxide. It is a subhalide, containing fewer than the normal number of fluorine atoms, compared with boron trifluoride. It can also be called a borylene, as it contains boron with two unshared electrons. BF is isoelectronic with carbon monoxide and dinitrogen; each molecule has 14 electrons.

<span class="mw-page-title-main">Thiophosphoryl fluoride</span> Chemical compound

Thiophosphoryl fluoride is an inorganic molecular gas with formula PSF3 containing phosphorus, sulfur and fluorine. It spontaneously ignites in air and burns with a cool flame. The discoverers were able to have flames around their hands without discomfort, and called it "probably one of the coldest flames known". The gas was discovered in 1888.

Nitrogen pentafluoride (NF5) is a theoretical compound of nitrogen and fluorine that is hypothesized to exist based on the existence of the pentafluorides of the atoms below nitrogen in the periodic table, such as phosphorus pentafluoride. Theoretical models of the nitrogen pentafluoride molecule are either a trigonal bipyramidal covalently bound molecule with symmetry group D3h, or NF+
4
F, which would be an ionic solid.

Fluorine forms a great variety of chemical compounds, within which it always adopts an oxidation state of −1. With other atoms, fluorine forms either polar covalent bonds or ionic bonds. Most frequently, covalent bonds involving fluorine atoms are single bonds, although at least two examples of a higher order bond exist. Fluoride may act as a bridging ligand between two metals in some complex molecules. Molecules containing fluorine may also exhibit hydrogen bonding. Fluorine's chemistry includes inorganic compounds formed with hydrogen, metals, nonmetals, and even noble gases; as well as a diverse set of organic compounds. For many elements the highest known oxidation state can be achieved in a fluoride. For some elements this is achieved exclusively in a fluoride, for others exclusively in an oxide; and for still others the highest oxidation states of oxides and fluorides are always equal.

Chlorotrifluorosilane is an inorganic gaseous compound with formula SiClF3 composed of silicon, fluorine and chlorine. It is a silane that substitutes hydrogen with fluorine and chlorine atoms.

<span class="mw-page-title-main">Boron monofluoride monoxide</span> Chemical compound

Boron monofluoride monoxide or oxoboryl fluoride or fluoroxoborane is an unstable inorganic molecular substance with formula FBO. It is also called boron fluoride oxide, fluoro(oxo)borane or fluoro-oxoborane. The molecule is stable at high temperatures, but below 1000 °C condenses to a trimer (BOF)3 called trifluoroboroxin. FBO can be isolated as a triatomic non-metallic molecule in an inert gas matrix, and has been condensed in solid neon and argon. When an attempt is made to condense the gas to a solid in bulk, a polymeric glass is formed, which is deficient in fluoride, and when heated forms a glassy froth like popcorn. Boron fluoride oxide has been studied because of its production in high energy rocket fuels that contain boron and fluorine, and in the form of an oxyfluoride glass. BOF glass is unusual in that it can condense directly from gas.

<span class="mw-page-title-main">Chlorine trifluoride oxide</span> Chemical compound

Chlorine oxide trifluoride or chlorine trifluoride oxide is a corrosive liquid molecular compound with formula ClOF3. It was developed secretly as a rocket fuel oxidiser.

<span class="mw-page-title-main">Radon compounds</span>

Radon compounds are chemical compounds formed by the element radon (Rn). Radon is a noble gas, i.e. a zero-valence element, and is chemically not very reactive. The 3.8-day half-life of radon-222 makes it useful in physical sciences as a natural tracer. Because radon is a gas under normal circumstances, and its decay-chain parents are not, it can readily be extracted from them for research.

Chlorine trifluoride dioxide is an inorganic compound of chlorine, fluorine, and oxygen with the chemical formula ClO2F3.

References

  1. Müller, Holger S. P (10 December 1999). "Infrared spectroscopy and molecular properties of chlorosyl fluoride, FClO". Chemical Physics Letters . 314 (5): 396–402. Bibcode:1999CPL...314..396M. doi:10.1016/S0009-2614(99)01197-5. ISSN   0009-2614 . Retrieved 27 March 2023.
  2. Müller, Holger S. P.; Cohen, Edward A. (8 February 2002). "The molecular properties of chlorosyl fluoride, FClO, as determined from the ground-state rotational spectrum". The Journal of Chemical Physics . 116 (6): 2407–2416. Bibcode:2002JChPh.116.2407M. doi:10.1063/1.1433002. ISSN   0021-9606 . Retrieved 27 March 2023.
  3. Vogt, J. (2011). "755 ClFO Chlorosyl fluoride". Asymmetric Top Molecules. Part 3. Landolt-Börnstein - Group II Molecules and Radicals. 29D3. Springer Berlin Heidelberg: 296–298. Bibcode:2011LanB.29D3..296V. doi:10.1007/978-3-642-14145-4_177. ISBN   978-3-642-14144-7.
  4. 1 2 3 Haupt, Axel (22 March 2021). Organic and Inorganic Fluorine Chemistry: Methods and Applications. Walter de Gruyter GmbH & Co KG. p. 139. ISBN   978-3-11-065933-7 . Retrieved 27 March 2023.