Graduated cylinder

Last updated
Different types of graduated cylinder: 10mL, 25mL, 50mL and 100mL graduated cylinder Different types of graduated cylinder- 10ml, 25ml, 50ml and 100 ml graduated cylinder.jpg
Different types of graduated cylinder: 10mL, 25mL, 50mL and 100mL graduated cylinder

A graduated cylinder, also known as a measuring cylinder or mixing cylinder, is a common piece of laboratory equipment used to measure the volume of a liquid. It has a narrow cylindrical shape. Each marked line on the graduated cylinder represents the amount of liquid that has been measured.

Contents

Materials and structure

Large graduated cylinders are usually made of polypropylene for its excellent chemical resistance or polymethylpentene for its transparency, making them lighter and less fragile than glass. Polypropylene (PP) is easy to repeatedly autoclave; however, autoclaving in excess of about 121 °C (250 °F) (depending on the chemical formulation: typical commercial grade polypropylene melts in excess of 177 °C (351 °F)), can warp or damage polypropylene graduated cylinders, affecting accuracy. [1]

A traditional graduated cylinder is usually narrow and tall so as to increase the accuracy and precision of volume measurement. It has a plastic or glass base (stand, foot, support) and a "spout" for easy pouring of the measured liquid. An additional version is wide and low.

Mixing cylinders have ground glass joints instead of a spout, so they can be closed with a stopper or connected directly with other elements of a manifold. [2] With this kind of cylinder, the metered liquid does not pour directly, but is often removed using a Cannula. A graduated cylinder is meant to be read with the surface of the liquid at eye level, where the center of the meniscus shows the measurement line. Typical capacities of graduated cylinders are from 10 mL to 1000 mL.

Common uses

Graduated cylinders are often used to measure the volume of a liquid. Graduated cylinders are generally more accurate and precise than laboratory flasks and beakers, but they should not be used to perform volumetric analysis; [3] volumetric glassware, such as a volumetric flask or volumetric pipette, should be used, as it is even more accurate and precise. Graduated cylinders are sometimes used to measure the volume of a solid indirectly by measuring the displacement of a liquid.

Scales and accuracy

For accuracy the volume on graduated cylinders is depicted on scales with 3 significant digits: 100mL cylinders have 1ml grading divisions while 10mL cylinders have 0.1 mL grading divisions.

Two classes of accuracy exist for graduated cylinders. Class A has double the accuracy of class B. [4] Cylinders can have single or double scales. Single scales allow to read the volume from top to bottom (filling volume) while double scale cylinders allow reading for filling and pouring (reverse scale).

Graduated cylinders are calibrated either “to contain” (indicated liquid volume inside the cylinder) and marked as "TC" or “to deliver” (indicated liquid volume poured out, accounting for liquid traces left in the cylinder) and marked “TD”. [5] Formerly the tolerances for “to deliver” and “to contain” cylinders are distinct; however now these are the same. Also, the international symbols “IN” and “EX” are more likely to be used instead of “TC” and “TD” respectively. [6]

Measurement

Grauduate cylinder reading.png
If the reading is done and the value calculated is set to be 40.0 mL. The precise value would be 40.0 ± 0.1 or 40.1 to 39.9 mL
Graduated cylinder illustration.png
If the reading is done and the value calculated is set to be 36.5 mL. The more precise value equates to 36.5 0.5 mL or 36.0 to 37.0 mL.

To read the volume accurately, the observation must be at an eye level and read at the bottom of a meniscus of the liquid level. [7] The main reason as to why the reading of the volume is done via meniscus is due to the nature of the liquid in a closed surrounded space. By nature, liquid in the cylinder is attracted to the wall around it through molecular forces. This forces the liquid surface to develop either a convex or concave shape, depending on the type of the liquid in the cylinder. Reading the liquid at the bottom part of a concave or the top part of the convex liquid is equivalent to reading the liquid at its meniscus. [8] From the picture, the level of the liquid will be read at the bottom of the meniscus, which is the concave. The most accurate of the reading that could be done here is reduced down to 1 mL due to the given means of measurement on the cylinder. From this, the derived error is one tenth of the least figure. For instance, if the reading is done and the value calculated is set to be 36.5 mL. The error, give or take 0.1 mL, must be included too. Therefore, the more precise value equates to 36.5 0.1; 36.4 or 36.6 mL. Therefore, there are 3 significant figures can be read from the given graduated cylinder picture. [9] Another example, if the reading is done and the value calculated is set to be 40.0 mL. The precise value is 40.0 0.1; 40.1 or 39.9 mL. [10]

History

The graduated cylinder was first introduced in 1784 by Louis Bernard Guyton de Morveau, for use in volumetric analysis. [11]

See also

Related Research Articles

<span class="mw-page-title-main">Thermometer</span> Device to measure temperature

A thermometer is a device that measures temperature or temperature gradient. A thermometer has two important elements: (1) a temperature sensor in which some change occurs with a change in temperature; and (2) some means of converting this change into a numerical value. Thermometers are widely used in technology and industry to monitor processes, in meteorology, in medicine, and in scientific research.

<span class="mw-page-title-main">Volume</span> Quantity of three-dimensional space

Volume is a measure of regions in three-dimensional space. It is often quantified numerically using SI derived units or by various imperial or US customary units. The definition of length (cubed) is interrelated with volume. The volume of a container is generally understood to be the capacity of the container; i.e., the amount of fluid that the container could hold, rather than the amount of space the container itself displaces. By metonymy, the term "volume" sometimes is used to refer to the corresponding region.

<span class="mw-page-title-main">Relative density</span> Ratio of two densities

Relative density, also called specific gravity, is a dimensionless quantity defined as the ratio of the density of a substance to the density of a given reference material. Specific gravity for liquids is nearly always measured with respect to water at its densest ; for gases, the reference is air at room temperature. The term "relative density" is often preferred in scientific usage, whereas the term "specific gravity" is deprecated.

<span class="mw-page-title-main">Micrometer (device)</span> Tool for the precise measurement of a components length, width, and/or depth

A micrometer, sometimes known as a micrometer screw gauge, is a device incorporating a calibrated screw widely used for accurate measurement of components in mechanical engineering and machining as well as most mechanical trades, along with other metrological instruments such as dial, vernier, and digital calipers. Micrometers are usually, but not always, in the form of calipers. The spindle is a very accurately machined screw and the object to be measured is placed between the spindle and the anvil. The spindle is moved by turning the ratchet knob or thimble until the object to be measured is lightly touched by both the spindle and the anvil.

<span class="mw-page-title-main">Erlenmeyer flask</span> Laboratory flask with a flat bottom

An Erlenmeyer flask, also known as a conical flask or a titration flask, is a type of laboratory flask which features a flat bottom, a conical body, and a cylindrical neck. It is most often used in a laboratory. It is named after the German chemist Emil Erlenmeyer (1825–1909), who created it in 1860.

<span class="mw-page-title-main">Laboratory glassware</span> Variety of equipment usually made of glass used for scientific experiments

Laboratory glassware refers to a variety of equipment used in scientific work, and traditionally made of glass. Glass can be blown, bent, cut, molded, and formed into many sizes and shapes, and is therefore common in chemistry, biology, and analytical laboratories. Many laboratories have training programs to demonstrate how glassware is used and to alert first–time users to the safety hazards involved with using glassware.

<span class="mw-page-title-main">Cooking weights and measures</span> Specifications for quantities of ingredients

In recipes, quantities of ingredients may be specified by mass, by volume, or by count.

A burette is a graduated glass tube with a tap at one end, for delivering known volumes of a liquid, especially in titrations. It is a long, graduated glass tube, with a stopcock at its lower end and a tapered capillary tube at the stopcock's outlet. The flow of liquid from the tube to the burette tip is controlled by the stopcock valve.

<span class="mw-page-title-main">Pipette</span> Liquid-transferring laboratory tool

A pipette is a type of laboratory tool commonly used in chemistry and biology to transport a measured volume of liquid, often as a media dispenser. Pipettes come in several designs for various purposes with differing levels of accuracy and precision, from single piece glass pipettes to more complex adjustable or electronic pipettes. Many pipette types work by creating a partial vacuum above the liquid-holding chamber and selectively releasing this vacuum to draw up and dispense liquid. Measurement accuracy varies greatly depending on the instrument.

Flow measurement is the quantification of bulk fluid movement. Flow can be measured using devices called flowmeters in various ways. The common types of flowmeters with industrial applications are listed below:

<span class="mw-page-title-main">Meniscus (liquid)</span> Curve in a liquids surface due to adhesion to the container walls

In physics, the meniscus is the curve in the upper surface of a liquid close to the surface of the container or another object, produced by surface tension.

A conical measure is a type of laboratory glassware which consists of a conical cup with a notch on the top to allow for the easy pouring of liquids, and graduated markings on the side to allow easy and accurate measurement of volumes of liquid.

<span class="mw-page-title-main">Volumetric flask</span> Laboratory glassware

A volumetric flask is a piece of laboratory apparatus, a type of laboratory flask, calibrated to contain a precise volume at a certain temperature. Volumetric flasks are used for precise dilutions and preparation of standard solutions. These flasks are usually pear-shaped, with a flat bottom, and made of glass or plastic. The flask's mouth is either furnished with a plastic snap/screw cap or fitted with a joint to accommodate a PTFE or glass stopper. The neck of volumetric flasks is elongated and narrow with an etched ring graduation marking. The marking indicates the volume of liquid contained when filled up to that point. The marking is typically calibrated "to contain" at 20 °C and indicated correspondingly on a label. The flask's label also indicates the nominal volume, tolerance, precision class, relevant manufacturing standard and the manufacturer's logo. Volumetric flasks are of various sizes, containing from a fraction of a milliliter to hundreds of liters of liquid.

<span class="mw-page-title-main">Eudiometer</span> Graduated glass tube used to measure the change in volume of a gas mixture

A eudiometer is a laboratory device that measures the change in volume of a gas mixture following a physical or chemical change.

<span class="mw-page-title-main">Measuring cup</span> Kitchen utensil to measure volume of cooking ingredients

A measuring cup is a kitchen utensil used primarily to measure the volume of liquid or bulk solid cooking ingredients such as flour and sugar, especially for volumes from about 50 mL upwards. Measuring cups are also used to measure washing powder, liquid detergents and bleach for clothes washing. The cup will usually have a scale marked in cups and fractions of a cup, and often with fluid measure and weight of a selection of dry foodstuffs.

<span class="mw-page-title-main">Beaker (laboratory equipment)</span> Glass container used in laboratories

In laboratory equipment, a beaker is generally a cylindrical container with a flat bottom. Most also have a small spout to aid pouring, as shown in the picture. Beakers are available in a wide range of sizes, from one milliliter up to several liters. A beaker is distinguished from a flask by having straight rather than sloping sides. The exception to this definition is a slightly conical-sided beaker called a Philips beaker. The beaker shape in general drinkware is similar.

<span class="mw-page-title-main">Dilatometer</span> Instrument measuring volume changes

A dilatometer is a scientific instrument that measures volume changes caused by a physical or chemical process. A familiar application of a dilatometer is the mercury-in-glass thermometer, in which the change in volume of the liquid column is read from a graduated scale. Because mercury has a fairly constant rate of expansion over ambient temperature ranges, the volume changes are directly related to temperature.

<span class="mw-page-title-main">Eye dropper</span> Device used to transfer small quantities of liquids

An eye dropper, also called Pasteur pipette or simply dropper, is a device used to transfer small quantities of liquids. They are used in the laboratory and also to dispense small amounts of liquid medicines. A very common use was to dispense eye drops into the eye. The commonly recognized form is a glass tube tapered to a narrow point and fitted with a rubber bulb at the top, although many styles of both plastic and glass droppers exist. The combination of the pipette and rubber bulb has also been referred to as a teat pipette. The Pasteur pipette name is from the French scientist Louis Pasteur, who used a variant of them extensively during his research. In the past, there was no equipment to transfer a chemical solution without exposing it to the external environment. The hygiene and purity of chemical compounds is necessary for the expected result of each experiment. The eye dropper, both glass and plastic types, can be sterilized and plugged with a rubber bulb at the open end of the pipette preventing any contamination from the atmosphere. Generally, they are considered cheap enough to be disposable, however, so long as the glass point is not chipped, the eye dropper may be washed and reused indefinitely.

<span class="mw-page-title-main">Air displacement pipette</span>

Piston-driven air displacement pipettes are a type of micropipette, which are tools to handle volumes of liquid in the microliter scale. They are more commonly used in biology and biochemistry, and less commonly in chemistry; the equipment is susceptible to damage from many organic solvents.

<span class="mw-page-title-main">Graduated pipette</span> Pipette with its volume, in increments, marked along the tube

A graduated pipette is a pipette with its volume, in increments, marked along the tube. It is used to accurately measure and transfer a volume of liquid from one container to another. It is made from plastic or glass tubes and has a tapered tip. Along the body of the tube are graduation markings indicating volume from the tip to that point. A small pipette allows for more precise measurement of fluids; a larger pipette can be used to measure volumes when the accuracy of the measurement is less critical. Accordingly, pipettes vary in volume, with most measuring between 0 and 25.0 millilitres.

References

  1. "Graduated Cylinders - SPI Supplies". www.2spi.com. Retrieved 2020-02-20.
  2. "Elemental Scientific, LLC - Science supplies & educational Items". www.elementalscientific.net. Retrieved 20 Feb 2020.
  3. Pradyot Patnaik (2003). "Specifications for volumetric ware". Dean's Handbook of Analytical Chemistry, 2nd Edition. McGraw-Hill. ISBN   978-0071410601.
  4. "ASTM E1272 - 02(2019) Standard Specification for Laboratory Glass Graduated Cylinders".
  5. "Graduated Cylinders Information".
  6. "Graduated Cylinders". sizes.com. Retrieved 2016-02-23.
  7. "graduated cylinder" (PDF). ohlone.edu. Archived from the original (PDF) on 2015-06-26. Retrieved 2015-06-25.
  8. "Volume Measurements with a Graduated Cylinder" (PDF). Archived from the original (PDF) on 2016-02-16. Retrieved 2016-02-04.
  9. "Math Skills - Scientific Notation". www.chem.tamu.edu. Retrieved 2016-02-12.
  10. Robinson, Michael; Robinson, Mike; Taylor, Mike (2002-01-01). Maths for Advanced Chemistry. Nelson Thornes. ISBN   9780748765829 . Retrieved 15 March 2016.
  11. Olukoga, A O; Bolodeoku, J; Donaldson, D (October 1997). "Laboratory Instrumentation in Clinical Biochemistry: An Historical Perspective". Journal of the Royal Society of Medicine . 90 (10): 570–577. doi: 10.1177/014107689709001013 . ISSN   0141-0768. PMC   1296603 . Retrieved 2023-03-09.