Monocrotophos

Last updated
Monocrotophos
Monocrotophos.svg
Names
Preferred IUPAC name
Dimethyl (2E)-4-(methylamino)-4-oxobut-2-en-2-yl phosphate
Other names
3-Hydroxy-N-methylcrotonamide dimethylphosphate, Monocron
Identifiers
3D model (JSmol)
ChEBI
ChemSpider
ECHA InfoCard 100.027.311 OOjs UI icon edit-ltr-progressive.svg
KEGG
PubChem CID
UNII
  • InChI=1S/C7H14NO5P/c1-6(5-7(9)8-2)13-14(10,11-3)12-4/h5H,1-4H3,(H,8,9)/b6-5+ Yes check.svgY
    Key: KRTSDMXIXPKRQR-AATRIKPKSA-N Yes check.svgY
  • InChI=1/C7H14NO5P/c1-6(5-7(9)8-2)13-14(10,11-3)12-4/h5H,1-4H3,(H,8,9)/b6-5+
    Key: KRTSDMXIXPKRQR-AATRIKPKBN
  • O=P(O/C(=C/C(=O)NC)C)(OC)OC
Properties
C7H14NO5P
Molar mass 223.2 g/mol
AppearanceColorless to reddish-brown solid
Odor Mild, ester-like [1]
Density 1.33 g/cm3
Melting point 55 °C (131 °F; 328 K)
Boiling point 120 °C (248 °F; 393 K) .0005 mmHg
miscible [1]
Vapor pressure 0.000007 mmHg (20°C) [1]
Hazards
Occupational safety and health (OHS/OSH):
Main hazards
blood cholinesterase [1]
Flash point >93 °C; 200 °F; 366 K [1]
NIOSH (US health exposure limits):
PEL (Permissible)
none [1]
REL (Recommended)
TWA 0.25 mg/m3 [1]
IDLH (Immediate danger)
N.D. [1]
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
Yes check.svgY  verify  (what is  Yes check.svgYX mark.svgN ?)

Monocrotophos is an organophosphate insecticide. It is acutely toxic to birds and humans, so it has been banned in the U.S., the E.U., India and many other countries.

Contents

Uses

Monocrotophos is principally used in agriculture, as a relatively cheap pesticide. However, it is also used frequently as a tool to commit suicide. [2] It is used as a pesticide for cucumber.

Monocrotophos is believed to be the contaminant responsible for the death of 23 schoolchildren in a Bihar, India school. They ate a state-provided school lunch in the district of Saran in India in July 2013 which was prepared in oil kept in the container of this pesticide. [3] [4]

Toxicity

To wildlife

Widespread bird kills, including a large kill of Swainson's Hawks in Argentina, have resulted from the use of monocrotophos. [5]

Diabetogen

In a study published in Genome Biology, [6] researchers demonstrated the gut microbiota mediated diabetogenic effect of organophosphate insecticides. They used monocrotophos as the prototypical organophosphate in their study and showcased that during chronic intake, monocrotophos is degraded by the gut microbiota and the end products are converted to glucose via gluconeogenesis that account for glucose intolerance. All the studies were validated in human samples from the villages in Madurai.

Cardiotoxicity

In a recent study, [7] Wistar rats were administered 1/50 of LD50 dosage of monocrotophos (0.36 mg/kg body weight) orally via gavage daily for three weeks. Animals administered Monocrotophos exhibited mild hyperglycemia and dyslipidemia in the blood. Cardiac oxidative stress was conferred by accumulation of protein carbonyls, lipid peroxidation and glutathione production. The cardiac markers (cTn-I, CK-MB and LDH) showed elevated levels in blood plasma, which indicates cardiac tissue damage. The histopathology of the heart tissue authenticated the monocrotophos induced tissue damage by showing signs of nonspecific inflammatory changes and edema between muscle fibres. Thus the findings of this preliminary study illustrate the cardiotoxic effect of prolonged monocrotophos intake in rats and suggest that MCP can be a possible independent and potent environmental cardiovascular risk factor.

Acute effects

Nerve growth factor (50 ng/ml) induced functional differentiation in PC12 cells has been reported. The studies have been carried out showing mitochondria mediated apoptosis in PC12 cells exposed to monocrotophos. A significant induction in reactive oxygen species, lipid peroxides, and the ratio of glutathione disulfide/reduced glutathione was observed in cells exposed to selected doses of monocrotophos. Following the exposure of PC12 cells to monocrotophos, the levels of protein and mRNA expression of caspase-3, caspase-9, BAX, p53, p21, PUMA, and cytochrome-c were significantly upregulated, whereas the levels of Bcl-2, Bcl-w, and Mcl-1 were downregulated. TUNEL assay, DNA laddering, and micronuclei induction show that long-term exposure of PC12 cells to monocrotophos at higher concentration (10−5 M) decreases the number of apoptotic events due to an increase in the number of necrotic cells. Monocrotophos-induced translocation of BAX and cytochrome-c proteins between the cytoplasm and mitochondria confirmed the role of monocrotophos in the permeability of the mitochondrial membrane. Mitochondria mediated apoptosis induction was confirmed by the increased activity of caspase cascade. These apoptotic changes could be correlated with elevated levels of expression of selected cytochrome P450s (CYP1A1/1A2, 2B1/2B2, 2E1) in PC12 cells exposed to monocrotophos (10−5 M). [8]

Related Research Articles

<span class="mw-page-title-main">Apoptosis</span> Programmed cell death in multicellular organisms

Apoptosis is a form of programmed cell death that occurs in multicellular organisms and in some eukaryotic, single-celled microorganisms such as yeast. Biochemical events lead to characteristic cell changes (morphology) and death. These changes include blebbing, cell shrinkage, nuclear fragmentation, chromatin condensation, DNA fragmentation, and mRNA decay. The average adult human loses between 50 and 70 billion cells each day due to apoptosis. For an average human child between eight and fourteen years old, each day the approximate lost is 20 to 30 billion cells.

<span class="mw-page-title-main">Cytochrome c</span> Protein-coding gene in the species Homo sapiens

The cytochrome complex, or cyt c, is a small hemeprotein found loosely associated with the inner membrane of the mitochondrion where it plays a critical role in cellular respiration. It transfers electrons between Complexes III and IV. Cytochrome c is highly water-soluble, unlike other cytochromes. It is capable of undergoing oxidation and reduction as its iron atom converts between the ferrous and ferric forms, but does not bind oxygen. It also plays a major role in cell apoptosis. In humans, cytochrome c is encoded by the CYCS gene.

<span class="mw-page-title-main">Reactive oxygen species</span> Highly reactive molecules formed from diatomic oxygen (O₂)

In chemistry and biology, reactive oxygen species (ROS) are highly reactive chemicals formed from diatomic oxygen (O2), water, and hydrogen peroxide. Some prominent ROS are hydroperoxide (O2H), superoxide (O2-), hydroxyl radical (OH.), and singlet oxygen. ROS are pervasive because they are readily produced from O2, which is abundant. ROS are important in many ways, both beneficial and otherwise. ROS function as signals, that turn on and off biological functions. They are intermediates in the redox behavior of O2, which is central to fuel cells. ROS are central to the photodegradation of organic pollutants in the atmosphere. Most often however, ROS are discussed in a biological context, ranging from their effects on aging and their role in causing dangerous genetic mutations.

<span class="mw-page-title-main">Gingerol</span> Chemical compound

Gingerol ([6]-gingerol) is a phenolic phytochemical compound found in fresh ginger that activates heat receptors on the tongue. It is normally found as a pungent yellow oil in the ginger rhizome, but can also form a low-melting crystalline solid. This chemical compound is found in all members of the Zingiberaceae family and is high in concentrations in the grains of paradise as well as an African Ginger species.

<span class="mw-page-title-main">Apoptosome</span>

The apoptosome is a large quaternary protein structure formed in the process of apoptosis. Its formation is triggered by the release of cytochrome c from the mitochondria in response to an internal (intrinsic) or external (extrinsic) cell death stimulus. Stimuli can vary from DNA damage and viral infection to developmental cues such as those leading to the degradation of a tadpole's tail.

The mitochondrial permeability transition pore is a protein that is formed in the inner membrane of the mitochondria under certain pathological conditions such as traumatic brain injury and stroke. Opening allows increase in the permeability of the mitochondrial membranes to molecules of less than 1500 daltons in molecular weight. Induction of the permeability transition pore, mitochondrial membrane permeability transition, can lead to mitochondrial swelling and cell death through apoptosis or necrosis depending on the particular biological setting.

<span class="mw-page-title-main">Phospholipid scramblase</span> Protein

Scramblase is a protein responsible for the translocation of phospholipids between the two monolayers of a lipid bilayer of a cell membrane. In humans, phospholipid scramblases (PLSCRs) constitute a family of five homologous proteins that are named as hPLSCR1–hPLSCR5. Scramblases are members of the general family of transmembrane lipid transporters known as flippases. Scramblases are distinct from flippases and floppases. Scramblases, flippases, and floppases are three different types of enzymatic groups of phospholipid transportation enzymes. The inner-leaflet, facing the inside of the cell, contains negatively charged amino-phospholipids and phosphatidylethanolamine. The outer-leaflet, facing the outside environment, contains phosphatidylcholine and sphingomyelin. Scramblase is an enzyme, present in the cell membrane, that can transport (scramble) the negatively charged phospholipids from the inner-leaflet to the outer-leaflet, and vice versa.

<span class="mw-page-title-main">BH3 interacting-domain death agonist</span> Protein-coding gene in the species Homo sapiens

The BH3 interacting-domain death agonist, or BID, gene is a pro-apoptotic member of the Bcl-2 protein family. Bcl-2 family members share one or more of the four characteristic domains of homology entitled the Bcl-2 homology (BH) domains, and can form hetero- or homodimers. Bcl-2 proteins act as anti- or pro-apoptotic regulators that are involved in a wide variety of cellular activities.

p53 upregulated modulator of apoptosis Protein-coding gene in the species Homo sapiens

The p53 upregulated modulator of apoptosis (PUMA) also known as Bcl-2-binding component 3 (BBC3), is a pro-apoptotic protein, member of the Bcl-2 protein family. In humans, the Bcl-2-binding component 3 protein is encoded by the BBC3 gene. The expression of PUMA is regulated by the tumor suppressor p53. PUMA is involved in p53-dependent and -independent apoptosis induced by a variety of signals, and is regulated by transcription factors, not by post-translational modifications. After activation, PUMA interacts with antiapoptotic Bcl-2 family members, thus freeing Bax and/or Bak which are then able to signal apoptosis to the mitochondria. Following mitochondrial dysfunction, the caspase cascade is activated ultimately leading to cell death.

<span class="mw-page-title-main">Caspase-9</span> Protein-coding gene in the species Homo sapiens

Caspase-9 is an enzyme that in humans is encoded by the CASP9 gene. It is an initiator caspase, critical to the apoptotic pathway found in many tissues. Caspase-9 homologs have been identified in all mammals for which they are known to exist, such as Mus musculus and Pan troglodytes.

<span class="mw-page-title-main">Bcl-xL</span> Transmembrane molecule in the mitochondria

B-cell lymphoma-extra large (Bcl-xL), encoded by the BCL2-like 1 gene, is a transmembrane molecule in the mitochondria. It is a member of the Bcl-2 family of proteins, and acts as an anti-apoptotic protein by preventing the release of mitochondrial contents such as cytochrome c, which leads to caspase activation and ultimately, programmed cell death.

<span class="mw-page-title-main">XIAP</span> Protein-coding gene in the species Homo sapiens

X-linked inhibitor of apoptosis protein (XIAP), also known as inhibitor of apoptosis protein 3 (IAP3) and baculoviral IAP repeat-containing protein 4 (BIRC4), is a protein that stops apoptotic cell death. In humans, this protein (XIAP) is produced by a gene named XIAP gene located on the X chromosome.

<span class="mw-page-title-main">BOK (gene)</span> Protein-coding gene in the species Homo sapiens

Bok is a protein-coding gene of the Bcl-2 family that is found in many invertebrates and vertebrates. It induces apoptosis, a special type of cell death. Currently, the precise function of Bok in this process is unknown.

<span class="mw-page-title-main">HK2</span>

Hexokinase 2 also known as HK2 is an enzyme which in humans is encoded by the HK2 gene on chromosome 2. Hexokinases phosphorylate glucose to produce glucose-6-phosphate (G6P), the first step in most glucose metabolism pathways. This gene encodes hexokinase 2, the predominant form found in skeletal muscle. It localizes to the outer membrane of mitochondria. Expression of this gene is insulin-responsive, and studies in rat suggest that it is involved in the increased rate of glycolysis seen in rapidly growing cancer cells. [provided by RefSeq, Apr 2009]

<span class="mw-page-title-main">Bcl-2 family</span>

The Bcl-2 family consists of a number of evolutionarily-conserved proteins that share Bcl-2 homology (BH) domains. The Bcl-2 family is most notable for their regulation of apoptosis, a form of programmed cell death, at the mitochondrion. The Bcl-2 family proteins consists of members that either promote or inhibit apoptosis, and control apoptosis by governing mitochondrial outer membrane permeabilization (MOMP), which is a key step in the intrinsic pathway of apoptosis. A total of 25 genes in the Bcl-2 family were identified by 2008.

<span class="mw-page-title-main">Necroptosis</span> Programmed form of necrosis, or inflammatory cell death

Necroptosis is a programmed form of necrosis, or inflammatory cell death. Conventionally, necrosis is associated with unprogrammed cell death resulting from cellular damage or infiltration by pathogens, in contrast to orderly, programmed cell death via apoptosis. The discovery of necroptosis showed that cells can execute necrosis in a programmed fashion and that apoptosis is not always the preferred form of cell death. Furthermore, the immunogenic nature of necroptosis favors its participation in certain circumstances, such as aiding in defence against pathogens by the immune system. Necroptosis is well defined as a viral defense mechanism, allowing the cell to undergo "cellular suicide" in a caspase-independent fashion in the presence of viral caspase inhibitors to restrict virus replication. In addition to being a response to disease, necroptosis has also been characterized as a component of inflammatory diseases such as Crohn's disease, pancreatitis, and myocardial infarction.

Oxytosis/ferroptosis is a type of programmed cell death dependent on iron and characterized by the accumulation of lipid peroxides, and is genetically and biochemically distinct from other forms of regulated cell death such as apoptosis. Oxytosis/ferroptosis is initiated by the failure of the glutathione-dependent antioxidant defenses, resulting in unchecked lipid peroxidation and eventual cell death. Lipophilic antioxidants and iron chelators can prevent ferroptotic cell death. Although the connection between iron and lipid peroxidation has been appreciated for years, it was not until 2012 that Brent Stockwell and Scott J. Dixon coined the term ferroptosis and described several of its key features. Pamela Maher and David Schubert discovered the process in 2001 and called it oxytosis. While they did not describe the involvement of iron at the time, oxytosis and ferroptosis are today thought to be the same cell death mechanism.

<span class="mw-page-title-main">Dicycloplatin</span> Chemical compound

Dicycloplatin is a chemotherapy medication used to treat a number of cancers which includes the non-small-cell lung carcinoma and prostate cancer.

<span class="mw-page-title-main">FAM162A</span> Protein-coding gene in the species Homo sapiens

Human growth and transformation-dependent protein (HGTD-P), also called E2-induced gene 5 protein (E2IG5), is a protein that in humans is encoded by the FAM162A gene on chromosome 3. This protein promotes intrinsic apoptosis in response to hypoxia via interactions with hypoxia-inducible factor-1α (HIF-1α). As a result, it has been associated with cerebral ischemia, myocardial infarction, and various cancers.

<span class="mw-page-title-main">TPEN</span> Chemical compound

TPEN (N,N,N,N-tetrakis(2-pyridinylmethyl)-1,2-ethanediamine) is an intracellular membrane-permeable ion chelator. TPEN has a high affinity for many transition metals and should not be considered specific or selective for a particular ion. Chelators can be used in chelation therapy to remove toxic metals in the body. TPEN is a chelator that has a high affinity for zinc. For example, one study showed that TPEN is a stronger chelator compared to other chelators like pentetic acid (DTPA) when high levels of zinc are present (15 μM). When low levels of zinc were present however (0, 3, 6, 9 and 12 μM zinc), there was no significant difference. TPEN is a hexadentate ligand which also forms complexes with other soft metal ions such as Cd2+.

References

  1. 1 2 3 4 5 6 7 8 NIOSH Pocket Guide to Chemical Hazards. "#0435". National Institute for Occupational Safety and Health (NIOSH).
  2. "Use of monochrotophos for suicide attempts" (PDF). Archived from the original (PDF) on 2013-11-02. Retrieved 2013-10-31.
  3. The poison pill in India's search for cheap food
  4. Children Die from Tainted Lunches at Indian School Accessed 21/08/2016
  5. Goldstein, Michael I.; Lacher, T.E.; Woodbridge, B.; Bechard, M.J.; Canavelli, S.B.; Zaccagnini, M.E.; Cobb, G.P.; Scollon, E.J.; Tribolet, R.; Hopper, M.J. (June 1999). "Monocrotophos-Induced Mass Mortality of Swainson's Hawks in Argentina, 1995–96". Ecotoxicology. Kluwer Academic Publishers. 8 (3): 201–214. doi:10.1023/A:1026496331396. S2CID   82846473.
  6. Velmurugan, Ganesan; et, al. (2017). "Gut microbial degradation of organophosphate insecticides-induces glucose intolerance via gluconeogenesis". Genome Biology. 18 (1): 8. doi: 10.1186/s13059-016-1134-6 . PMC   5260025 . PMID   28115022.
  7. Velmurugan, G.; Venkatesh Babu, D.D.; Ramasamy, Subbiah (2013). "Prolonged monocrotophos intake induces cardiac oxidative stress and myocardial damage in rats". Toxicology. 307: 103–8. doi:10.1016/j.tox.2012.11.022. PMID   23228476.
  8. Monocrotophos Induced Apoptosis in PC12 Cells: Role of Xenobiotic Metabolizing Cytochrome P450s