Nonsteroidal estrogen

Last updated
Nonsteroidal estrogen
Drug class
Diethylstilbestrol.svg
Diethylstilbestrol, one of the most well-known nonsteroidal estrogens.
Class identifiers
Synonyms Nonsteroidal estrogen receptor agonists
ATC code G03C
Biological target Estrogen receptors (ERα, ERβ, mERs (e.g., GPER, others))
Chemical class Nonsteroidal
Legal status
In Wikidata

A nonsteroidal estrogen is an estrogen with a nonsteroidal chemical structure. [1] The most well-known example is the stilbestrol estrogen diethylstilbestrol (DES). [1] [2] Although nonsteroidal estrogens formerly had an important place in medicine, they have gradually fallen out of favor following the discovery of toxicities associated with high-dose DES starting in the early 1970s, and are now almost never used. [2] [3] [4] On the other hand, virtually all selective estrogen receptor modulators (SERMs) are nonsteroidal, with triphenylethylenes like tamoxifen and clomifene having been derived from DES, [5] and these drugs remain widely used in medicine for the treatment of breast cancer among other indications. [6] In addition to pharmaceutical drugs, many xenoestrogens, including phytoestrogens, mycoestrogens, and synthetic endocrine disruptors like bisphenol A, are nonsteroidal substances with estrogenic activity. [7]

Contents

Pharmacology

Nonsteroidal estrogens act as agonists of the estrogen receptors, ERα and ERβ.

Affinities of estrogen receptor ligands for the ERα and ERβ
Ligand Other names Relative binding affinities (RBA, %)a Absolute binding affinities (Ki, nM)aAction
ERα ERβ ERα ERβ
Estradiol E2; 17β-Estradiol1001000.115 (0.04–0.24)0.15 (0.10–2.08)Estrogen
Estrone E1; 17-Ketoestradiol16.39 (0.7–60)6.5 (1.36–52)0.445 (0.3–1.01)1.75 (0.35–9.24)Estrogen
Estriol E3; 16α-OH-17β-E212.65 (4.03–56)26 (14.0–44.6)0.45 (0.35–1.4)0.7 (0.63–0.7)Estrogen
Estetrol E4; 15α,16α-Di-OH-17β-E24.03.04.919Estrogen
Alfatradiol 17α-Estradiol20.5 (7–80.1)8.195 (2–42)0.2–0.520.43–1.2Metabolite
16-Epiestriol 16β-Hydroxy-17β-estradiol7.795 (4.94–63)50 ? ?Metabolite
17-Epiestriol 16α-Hydroxy-17α-estradiol55.45 (29–103)79–80 ? ?Metabolite
16,17-Epiestriol 16β-Hydroxy-17α-estradiol1.013 ? ?Metabolite
2-Hydroxyestradiol 2-OH-E222 (7–81)11–352.51.3Metabolite
2-Methoxyestradiol 2-MeO-E20.0027–2.01.0 ? ?Metabolite
4-Hydroxyestradiol 4-OH-E213 (8–70)7–561.01.9Metabolite
4-Methoxyestradiol 4-MeO-E22.01.0 ? ?Metabolite
2-Hydroxyestrone 2-OH-E12.0–4.00.2–0.4 ? ?Metabolite
2-Methoxyestrone 2-MeO-E1<0.001–<1<1 ? ?Metabolite
4-Hydroxyestrone 4-OH-E11.0–2.01.0 ? ?Metabolite
4-Methoxyestrone 4-MeO-E1<1<1 ? ?Metabolite
16α-Hydroxyestrone 16α-OH-E1; 17-Ketoestriol2.0–6.535 ? ?Metabolite
2-Hydroxyestriol 2-OH-E32.01.0 ? ?Metabolite
4-Methoxyestriol 4-MeO-E31.01.0 ? ?Metabolite
Estradiol sulfate E2S; Estradiol 3-sulfate<1<1 ? ?Metabolite
Estradiol disulfate Estradiol 3,17β-disulfate0.0004 ? ? ?Metabolite
Estradiol 3-glucuronide E2-3G0.0079 ? ? ?Metabolite
Estradiol 17β-glucuronide E2-17G0.0015 ? ? ?Metabolite
Estradiol 3-gluc. 17β-sulfate E2-3G-17S0.0001 ? ? ?Metabolite
Estrone sulfate E1S; Estrone 3-sulfate<1<1>10>10Metabolite
Estradiol benzoate EB; Estradiol 3-benzoate10 ? ? ?Estrogen
Estradiol 17β-benzoate E2-17B11.332.6 ? ?Estrogen
Estrone methyl ether Estrone 3-methyl ether0.145 ? ? ?Estrogen
ent-Estradiol 1-Estradiol1.31–12.349.44–80.07 ? ?Estrogen
Equilin 7-Dehydroestrone13 (4.0–28.9)13.0–490.790.36Estrogen
Equilenin 6,8-Didehydroestrone2.0–157.0–200.640.62Estrogen
17β-Dihydroequilin 7-Dehydro-17β-estradiol7.9–1137.9–1080.090.17Estrogen
17α-Dihydroequilin 7-Dehydro-17α-estradiol18.6 (18–41)14–320.240.57Estrogen
17β-Dihydroequilenin 6,8-Didehydro-17β-estradiol35–6890–1000.150.20Estrogen
17α-Dihydroequilenin 6,8-Didehydro-17α-estradiol20490.500.37Estrogen
Δ8-Estradiol 8,9-Dehydro-17β-estradiol68720.150.25Estrogen
Δ8-Estrone 8,9-Dehydroestrone19320.520.57Estrogen
Ethinylestradiol EE; 17α-Ethynyl-17β-E2120.9 (68.8–480)44.4 (2.0–144)0.02–0.050.29–0.81Estrogen
Mestranol EE 3-methyl ether ?2.5 ? ?Estrogen
Moxestrol RU-2858; 11β-Methoxy-EE35–435–200.52.6Estrogen
Methylestradiol 17α-Methyl-17β-estradiol7044 ? ?Estrogen
Diethylstilbestrol DES; Stilbestrol129.5 (89.1–468)219.63 (61.2–295)0.040.05Estrogen
Hexestrol Dihydrodiethylstilbestrol153.6 (31–302)60–2340.060.06Estrogen
Dienestrol Dehydrostilbestrol37 (20.4–223)56–4040.050.03Estrogen
Benzestrol (B2) 114 ? ? ?Estrogen
Chlorotrianisene TACE1.74 ?15.30 ?Estrogen
Triphenylethylene TPE0.074 ? ? ?Estrogen
Triphenylbromoethylene TPBE2.69 ? ? ?Estrogen
Tamoxifen ICI-46,4743 (0.1–47)3.33 (0.28–6)3.4–9.692.5SERM
Afimoxifene 4-Hydroxytamoxifen; 4-OHT100.1 (1.7–257)10 (0.98–339)2.3 (0.1–3.61)0.04–4.8SERM
Toremifene 4-Chlorotamoxifen; 4-CT ? ?7.14–20.315.4SERM
Clomifene MRL-4125 (19.2–37.2)120.91.2SERM
Cyclofenil F-6066; Sexovid151–152243 ? ?SERM
Nafoxidine U-11,000A30.9–44160.30.8SERM
Raloxifene 41.2 (7.8–69)5.34 (0.54–16)0.188–0.5220.2SERM
Arzoxifene LY-353,381 ? ?0.179 ?SERM
Lasofoxifene CP-336,15610.2–16619.00.229 ?SERM
Ormeloxifene Centchroman ? ?0.313 ?SERM
Levormeloxifene 6720-CDRI; NNC-460,0201.551.88 ? ?SERM
Ospemifene Deaminohydroxytoremifene0.82–2.630.59–1.22 ? ?SERM
Bazedoxifene  ? ?0.053 ?SERM
Etacstil GW-56384.3011.5 ? ?SERM
ICI-164,384 63.5 (3.70–97.7)1660.20.08Antiestrogen
Fulvestrant ICI-182,78043.5 (9.4–325)21.65 (2.05–40.5)0.421.3Antiestrogen
Propylpyrazoletriol PPT49 (10.0–89.1)0.120.4092.8ERα agonist
16α-LE2 16α-Lactone-17β-estradiol14.6–570.0890.27131ERα agonist
16α-Iodo-E2 16α-Iodo-17β-estradiol30.22.30 ? ?ERα agonist
Methylpiperidinopyrazole MPP110.05 ? ?ERα antagonist
Diarylpropionitrile DPN0.12–0.256.6–1832.41.7ERβ agonist
8β-VE2 8β-Vinyl-17β-estradiol0.3522.0–8312.90.50ERβ agonist
Prinaberel ERB-041; WAY-202,0410.2767–72 ? ?ERβ agonist
ERB-196 WAY-202,196 ?180 ? ?ERβ agonist
Erteberel SERBA-1; LY-500,307 ? ?2.680.19ERβ agonist
SERBA-2  ? ?14.51.54ERβ agonist
Coumestrol 9.225 (0.0117–94)64.125 (0.41–185)0.14–80.00.07–27.0Xenoestrogen
Genistein 0.445 (0.0012–16)33.42 (0.86–87)2.6–1260.3–12.8Xenoestrogen
Equol 0.2–0.2870.85 (0.10–2.85) ? ?Xenoestrogen
Daidzein 0.07 (0.0018–9.3)0.7865 (0.04–17.1)2.085.3Xenoestrogen
Biochanin A 0.04 (0.022–0.15)0.6225 (0.010–1.2)1748.9Xenoestrogen
Kaempferol 0.07 (0.029–0.10)2.2 (0.002–3.00) ? ?Xenoestrogen
Naringenin 0.0054 (<0.001–0.01)0.15 (0.11–0.33) ? ?Xenoestrogen
8-Prenylnaringenin 8-PN4.4 ? ? ?Xenoestrogen
Quercetin <0.001–0.010.002–0.040 ? ?Xenoestrogen
Ipriflavone <0.01<0.01 ? ?Xenoestrogen
Miroestrol 0.39 ? ? ?Xenoestrogen
Deoxymiroestrol 2.0 ? ? ?Xenoestrogen
β-Sitosterol <0.001–0.0875<0.001–0.016 ? ?Xenoestrogen
Resveratrol <0.001–0.0032 ? ? ?Xenoestrogen
α-Zearalenol 48 (13–52.5) ? ? ?Xenoestrogen
β-Zearalenol 0.6 (0.032–13) ? ? ?Xenoestrogen
Zeranol α-Zearalanol48–111 ? ? ?Xenoestrogen
Taleranol β-Zearalanol16 (13–17.8)140.80.9Xenoestrogen
Zearalenone ZEN7.68 (2.04–28)9.45 (2.43–31.5) ? ?Xenoestrogen
Zearalanone ZAN0.51 ? ? ?Xenoestrogen
Bisphenol A BPA0.0315 (0.008–1.0)0.135 (0.002–4.23)19535Xenoestrogen
Endosulfan EDS<0.001–<0.01<0.01 ? ?Xenoestrogen
Kepone Chlordecone0.0069–0.2 ? ? ?Xenoestrogen
o,p'-DDT 0.0073–0.4 ? ? ?Xenoestrogen
p,p'-DDT 0.03 ? ? ?Xenoestrogen
Methoxychlor p,p'-Dimethoxy-DDT0.01 (<0.001–0.02)0.01–0.13 ? ?Xenoestrogen
HPTE Hydroxychlor; p,p'-OH-DDT1.2–1.7 ? ? ?Xenoestrogen
Testosterone T; 4-Androstenolone<0.0001–<0.01<0.002–0.040>5000>5000Androgen
Dihydrotestosterone DHT; 5α-Androstanolone0.01 (<0.001–0.05)0.0059–0.17221–>500073–1688Androgen
Nandrolone 19-Nortestosterone; 19-NT0.010.2376553Androgen
Dehydroepiandrosterone DHEA; Prasterone0.038 (<0.001–0.04)0.019–0.07245–1053163–515Androgen
5-Androstenediol A5; Androstenediol6173.60.9Androgen
4-Androstenediol 0.50.62319Androgen
4-Androstenedione A4; Androstenedione<0.01<0.01>10000>10000Androgen
3α-Androstanediol 3α-Adiol0.070.326048Androgen
3β-Androstanediol 3β-Adiol3762Androgen
Androstanedione 5α-Androstanedione<0.01<0.01>10000>10000Androgen
Etiocholanedione 5β-Androstanedione<0.01<0.01>10000>10000Androgen
Methyltestosterone 17α-Methyltestosterone<0.0001 ? ? ?Androgen
Ethinyl-3α-androstanediol 17α-Ethynyl-3α-adiol4.0<0.07 ? ?Estrogen
Ethinyl-3β-androstanediol 17α-Ethynyl-3β-adiol505.6 ? ?Estrogen
Progesterone P4; 4-Pregnenedione<0.001–0.6<0.001–0.010 ? ?Progestogen
Norethisterone NET; 17α-Ethynyl-19-NT0.085 (0.0015–<0.1)0.1 (0.01–0.3)1521084Progestogen
Norethynodrel 5(10)-Norethisterone0.5 (0.3–0.7)<0.1–0.221453Progestogen
Tibolone 7α-Methylnorethynodrel0.5 (0.45–2.0)0.2–0.076 ? ?Progestogen
Δ4-Tibolone 7α-Methylnorethisterone0.069–<0.10.027–<0.1 ? ?Progestogen
3α-Hydroxytibolone 2.5 (1.06–5.0)0.6–0.8 ? ?Progestogen
3β-Hydroxytibolone 1.6 (0.75–1.9)0.070–0.1 ? ?Progestogen
Footnotes:a = (1) Binding affinity values are of the format "median (range)" (# (#–#)), "range" (#–#), or "value" (#) depending on the values available. The full sets of values within the ranges can be found in the Wiki code. (2) Binding affinities were determined via displacement studies in a variety of in-vitro systems with labeled estradiol and human ERα and ERβ proteins (except the ERβ values from Kuiper et al. (1997), which are rat ERβ). Sources: See template page.

List of nonsteroidal estrogens

Synthetic

Pharmaceutical

SERMs like tamoxifen and raloxifene can also be considered to be nonsteroidal estrogens in some tissues. [8]

Environmental

Natural

See also

Related Research Articles

<span class="mw-page-title-main">Selective estrogen receptor modulator</span> Drugs acting on the estrogen receptor

Selective estrogen receptor modulators (SERMs), also known as estrogen receptor agonist/antagonists (ERAAs), are a class of drugs that act on the estrogen receptor (ER). A characteristic that distinguishes these substances from pure ER agonists and antagonists is that their action is different in various tissues, thereby granting the possibility to selectively inhibit or stimulate estrogen-like action in various tissues.

<span class="mw-page-title-main">Estrogen receptor</span> Proteins activated by the hormone estrogen

Estrogen receptors (ERs) are a group of proteins found inside cells. They are receptors that are activated by the hormone estrogen (17β-estradiol). Two classes of ER exist: nuclear estrogen receptors, which are members of the nuclear receptor family of intracellular receptors, and membrane estrogen receptors (mERs), which are mostly G protein-coupled receptors. This article refers to the former (ER).

<span class="mw-page-title-main">Stilbestrol</span> Chemical compound

Stilbestrol, or stilboestrol, also known as 4,4'-dihydroxystilbene or 4,4'-stilbenediol, is a stilbenoid nonsteroidal estrogen and the parent compound of a group of more potent nonsteroidal estrogen derivatives that includes, most notably, diethylstilbestrol (DES). The term "stilbestrol" is often used incorrectly to refer to DES, but they are not the same compound.

A nonsteroidal compound is a drug that is not a steroid nor a steroid derivative. Nonsteroidal anti-inflammatory drugs (NSAIDs) are distinguished from corticosteroids as a class of anti-inflammatory agents.

<span class="mw-page-title-main">Chlorotrianisene</span> Chemical compound

Chlorotrianisene (CTA), also known as tri-p-anisylchloroethylene (TACE) and sold under the brand name Tace among others, is a nonsteroidal estrogen related to diethylstilbestrol (DES) which was previously used in the treatment of menopausal symptoms and estrogen deficiency in women and prostate cancer in men, among other indications, but has since been discontinued and is now no longer available. It is taken by mouth.

<span class="mw-page-title-main">Lasofoxifene</span> Chemical compound

Lasofoxifene, sold under the brand name Fablyn, is a nonsteroidal selective estrogen receptor modulator (SERM) which is marketed by Pfizer in Lithuania and Portugal for the prevention and treatment of osteoporosis and for the treatment of vaginal atrophy, and the result of an exclusive research collaboration with Ligand Pharmaceuticals (LGND). It also appears to have had a statistically significant effect of reducing breast cancer in women according to a study published in The Journal of the National Cancer Institute.

Antiestrogens, also known as estrogen antagonists or estrogen blockers, are a class of drugs which prevent estrogens like estradiol from mediating their biological effects in the body. They act by blocking the estrogen receptor (ER) and/or inhibiting or suppressing estrogen production. Antiestrogens are one of three types of sex hormone antagonists, the others being antiandrogens and antiprogestogens. Antiestrogens are commonly used to stop steroid hormones, estrogen, from binding to the estrogen receptors leading to the decrease of estrogen levels. Decreased levels of estrogen can lead to complications in sexual development. Antiandrogens are sex hormone antagonists which are able to lower the production and the effects that testosterone can have on female bodies.

Mycoestrogens are xenoestrogens produced by fungi. They are sometimes referred to as mycotoxins. Among important mycoestrogens are zearalenone, zearalenol and zearalanol. Although all of these can be produced by various Fusarium species, zearalenol and zearalanol may also be produced endogenously in ruminants that have ingested zearalenone. Alpha-zearalanol is also produced semisynthetically, for veterinary use; such use is prohibited in the European Union.

<span class="mw-page-title-main">Afimoxifene</span> Chemical compound

Afimoxifene, also known as 4-hydroxytamoxifen (4-OHT) and by its tentative brand name TamoGel, is a selective estrogen receptor modulator (SERM) of the triphenylethylene group and an active metabolite of tamoxifen. The drug is under development under the tentative brand name TamoGel as a topical gel for the treatment of hyperplasia of the breast. It has completed a phase II clinical trial for cyclical mastalgia, but further studies are required before afimoxifene can be approved for this indication and marketed.

<span class="mw-page-title-main">Estrogen and neurodegenerative diseases</span>

Neurodegenerative diseases can disrupt the normal human homeostasis and result in abnormal estrogen levels. For example, neurodegenerative diseases can cause different physiological effects in males and females. In particular, estrogen studies have revealed complex interactions with neurodegenerative diseases. Estrogen was initially proposed to be a possible treatment for certain types of neurodegenerative diseases but a plethora of harmful side effects such as increased susceptibility to breast cancer and coronary heart disease overshadowed any beneficial outcomes. On the other hand, Estrogen Replacement Therapy has shown some positive effects with postmenopausal women. Estrogen and estrogen-like molecules form a large family of potentially beneficial alternatives that can have dramatic effects on human homeostasis and disease. Subsequently, large-scale efforts were initiated to screen for useful estrogen family molecules. Furthermore, scientists discovered new ways to synthesize estrogen-like compounds that can avoid many side effects.

<span class="mw-page-title-main">Triphenylethylene</span> Chemical compound

Triphenylethylene (TPE) is a simple aromatic hydrocarbon that possesses weak estrogenic activity. Its estrogenic effects were discovered in 1937. TPE was derived from structural modification of the more potent estrogen diethylstilbestrol, which is a member of the stilbestrol group of nonsteroidal estrogens.

<span class="mw-page-title-main">Estrobin</span> Chemical compound

Estrobin, also known as α,α-di(p-ethoxyphenyl)-β-phenylbromoethylene and commonly abbreviated as DBE, is a synthetic, nonsteroidal estrogen of the triphenylethylene group that was never marketed. Chlorotrianisene, and subsequently clomifene and tamoxifen, were derived from it. Estrobin, similarly to other triphenylethylenes, is very lipophilic and hence very long-lasting in its duration of action. Similarly to chlorotrianisene, estrobin behaves a prodrug to a much more potent estrogen in the body.

<span class="mw-page-title-main">Ethamoxytriphetol</span> Chemical compound

Ethamoxytriphetol is a synthetic nonsteroidal antiestrogen that was studied clinically in the late 1950s and early 1960s but was never marketed. MER-25 was first reported in 1958, and was the first antiestrogen to be discovered. It has been described as "essentially devoid of estrogenic activity" and as having "very low estrogenic activity in all species tested". However, some estrogenic effects in the uterus have been observed, so it is not a pure antiestrogen but is, instead, technically a selective estrogen receptor modulator (SERM). For all intents and purposes, it is a nearly pure antiestrogen, however.

<span class="mw-page-title-main">Bisdehydrodoisynolic acid</span> Chemical compound

Bisdehydrodoisynolic acid (BDDA), as the (Z)-isomer ( -BDDA), is a synthetic, nonsteroidal estrogen related to doisynolic acid that was never marketed. It is one of the most potent estrogens known, although it has more recently been characterized as a selective estrogen receptor modulator (SERM). BDDA and other doisynolic acid derivatives display relatively low affinity accompanied by disproportionately high estrogenic potency in vivo, which was eventually determined to be due to transformation into metabolites with greater estrogenic activity. The drug was discovered in 1947 as a degradation product of the reaction of equilenin or dihydroequilenin with potassium hydroxide. It is the seco-analogue of equilenin, while doisynolic acid is the seco-analogue of estrone. These compounds, along with diethylstilbestrol, can be considered to be open-ring analogues of estradiol. The methyl ether of BDDA, doisynoestrol, is also an estrogen, and in contrast to BDDA, has been marketed.

<span class="mw-page-title-main">GTx-758</span> Chemical compound

GTx-758 is a synthetic nonsteroidal estrogen which was under development by GTx, Inc. for the treatment of advanced prostate cancer. As of 2016, it had completed two phase II clinical trials.

<span class="mw-page-title-main">Triphenylchloroethylene</span> Synthetic form of estrogen

Triphenylchloroethylene, or triphenylchlorethylene, also known as chlorotriphenylethylene or as phenylstilbene chloride, is a synthetic nonsteroidal estrogen of the triphenylethylene group that was marketed in the 1940s for the treatment of menopausal symptoms, vaginal atrophy, lactation suppression, and all other estrogen-indicated conditions.

<span class="mw-page-title-main">SERBA-2</span> Chemical compound

SERBA-2, short for selective estrogen receptor beta agonist-2, is a synthetic, nonsteroidal estrogen which acts as a selective ERβ agonist. For the ERα and ERβ, SERBA-2 has affinities (Ki) of 14.5 nM and 1.54 nM, efficacies of 85% and 100%, and EC50 values of 85 nM and 3.61 nM, respectively, demonstrating 9-fold binding selectivity and 11-fold functional selectivity for the ERβ over the ERα. An enantiomer of SERBA-2, erteberel (SERBA-1), is more potent and selective in comparison and is under development for the treatment of schizophrenia.

(<i>S</i>,<i>S</i>)-Tetrahydrochrysene Chemical compound

(S,S)-Tetrahydrochrysene ((S,S)-THC) is a steroid-like nonsteroidal estrogen and agonist of both the estrogen receptors, ERα and ERβ. It is an enantiomer of (R,R)-tetrahydrochrysene ((R,R)-THC), which, in contrast, is an ERβ silent antagonist and ERα agonist with 10-fold selectivity (i.e., affinity) for the ERβ over the ERα and with 20-fold greater affinity for the ERβ relative to that of (S,S)-THC.

<span class="mw-page-title-main">Nitromifene</span> Chemical compound

Nitromifene (INN; also as the citrate salt nitromifene citrate (USAN), developmental code names CI-628, CN-5518, CN-55945) is a nonsteroidal selective estrogen receptor modulator (SERM) related to triphenylethylenes like tamoxifen that was never marketed. It is a mixture of (E)- and (Z)-isomers that possess similar antiestrogenic activity. The drug was described in 1966. Along with tamoxifen, nafoxidine, and clomifene, it was one of the earliest SERMs.

<span class="mw-page-title-main">4'-Hydroxynorendoxifen</span> Chemical compound

4'-Hydroxynorendoxifen is a synthetic, nonsteroidal antiestrogen of the triphenylethylene group. It is a dual selective estrogen receptor modulator (SERM) and aromatase inhibitor (AI), and was derived from tamoxifen, a SERM, and norendoxifen, a metabolite of tamoxifen that has been found to act as an AI. The drug has been suggested for potential development as a treatment for estrogen receptor (ER)-positive breast cancer. It was synthesized in 2015.

References

  1. 1 2 Hermkens PH, Kamp S, Lusher S, Veeneman GH (2006). "Non-steroidal steroid receptor modulators". IDrugs. 9 (7): 488–94. doi:10.2174/0929867053764671. PMID   16821162.
  2. 1 2 Scherr DS, Pitts WR (2003). "The nonsteroidal effects of diethylstilbestrol: the rationale for androgen deprivation therapy without estrogen deprivation in the treatment of prostate cancer". J. Urol. 170 (5): 1703–8. doi:10.1097/01.ju.0000077558.48257.3d. PMID   14532759.
  3. Hammes B, Laitman CJ (2003). "Diethylstilbestrol (DES) update: recommendations for the identification and management of DES-exposed individuals". J Midwifery Womens Health. 48 (1): 19–29. doi:10.1016/s1526-9523(02)00370-7. PMID   12589302.
  4. Schrager S, Potter BE (2004). "Diethylstilbestrol exposure". Am Fam Physician. 69 (10): 2395–400. PMID   15168959.
  5. Philipp Y. Maximov; Russell E. McDaniel; V. Craig Jordan (23 July 2013). Tamoxifen: Pioneering Medicine in Breast Cancer. Springer Science & Business Media. pp. 4–. ISBN   978-3-0348-0664-0.
  6. Edward P. Gelmann; Charles L. Sawyers; Frank J. Rauscher, III (19 December 2013). Molecular Oncology. Cambridge University Press. pp. 885–. ISBN   978-0-521-87662-9.
  7. Witorsch RJ (2002). "Endocrine disruptors: can biological effects and environmental risks be predicted?". Regul. Toxicol. Pharmacol. 36 (1): 118–30. doi:10.1006/rtph.2002.1564. PMID   12383724.
  8. V. Craig Jordan (2013). Estrogen Action, Selective Estrogen Receptor Modulators, and Women's Health: Progress and Promise. World Scientific. pp. 362–365. ISBN   978-1-84816-958-6.

Further reading