PNU-142633

Last updated
PNU-142633
PNU-142633.svg
Names
Preferred IUPAC name
(1S)-1-{2-[4-(4-Carbamoylphenyl)piperazin-1-yl]ethyl}-N-methyl-3,4-dihydro-1H-2-benzopyran-6-carboxamide
Other names
PNU-142633F
Identifiers
3D model (JSmol)
ChemSpider
PubChem CID
UNII
  • InChI=1S/C24H30N4O3/c1-26-24(30)19-4-7-21-18(16-19)9-15-31-22(21)8-10-27-11-13-28(14-12-27)20-5-2-17(3-6-20)23(25)29/h2-7,16,22H,8-15H2,1H3,(H2,25,29)(H,26,30)/t22-/m0/s1
    Key: PNTVCCRNJOGKGA-QFIPXVFZSA-N
  • InChI=1/C24H30N4O3/c1-26-24(30)19-4-7-21-18(16-19)9-15-31-22(21)8-10-27-11-13-28(14-12-27)20-5-2-17(3-6-20)23(25)29/h2-7,16,22H,8-15H2,1H3,(H2,25,29)(H,26,30)/t22-/m0/s1
    Key: PNTVCCRNJOGKGA-QFIPXVFZBB
  • NC(C(C=C1)=CC=C1N2CCN(CC[C@@H]3OCCC4=C3C=CC(C(NC)=O)=C4)CC2)=O
Properties
C24H30N4O3
Molar mass 422.529 g·mol−1
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).

PNU-142633 is an experimental drug candidate for the treatment of migraine. It exerts its effect as a selective, high affinity 5-HT1D receptor antagonist. [1] [2] PNU-142633 is well tolerated after oral administration. [3]

It was an interesting candidate due to its greater affinity for 5-HT1D compared to 5-HT1B receptors (typical migraine drugs such as triptans are agonists for both receptors), but experimental results were disappointing. [4]

The structure can be compared favorably with Sonepiprazole.

Related Research Articles

<span class="mw-page-title-main">Agonist</span> Chemical which binds to and activates a biochemical receptor

An agonist is a chemical that activates a receptor to produce a biological response. Receptors are cellular proteins whose activation causes the cell to modify what it is currently doing. In contrast, an antagonist blocks the action of the agonist, while an inverse agonist causes an action opposite to that of the agonist.

<span class="mw-page-title-main">Azapirone</span> Drug class of psycotropic drugs

Azapirones are a class of drugs used as anxiolytics, antidepressants, and antipsychotics. They are commonly used as add-ons to other antidepressants, such as selective serotonin reuptake inhibitors (SSRIs).

<span class="mw-page-title-main">Triptan</span> Class of pharmaceutical drugs

Triptans are a family of tryptamine-based drugs used as abortive medication in the treatment of migraines and cluster headaches. This drug class was first commercially introduced in the 1990s. While effective at treating individual headaches, they do not provide preventive treatment and are not considered a cure. They are not effective for the treatment of tension–type headache, except in persons who also experience migraines. Triptans do not relieve other kinds of pain.

<span class="mw-page-title-main">Zolmitriptan</span> Medication used in treatment of migraines

Zolmitriptan, sold under the brand name Zomig among others, is a triptan used in the acute treatment of migraine attacks with or without aura and cluster headaches. It is a selective serotonin receptor agonist of the 1B and 1D subtypes.

<span class="mw-page-title-main">Methysergide</span> Chemical compound

Methysergide, sold under the brand names Deseril and Sansert, is a monoaminergic medication of the ergoline and lysergamide groups which is used in the prophylaxis and treatment of migraine and cluster headaches. It has been withdrawn from the market in the United States and Canada due to adverse effects. It is taken by mouth.

<span class="mw-page-title-main">Lisuride</span> Chemical compound

Lisuride, sold under the brand name Dopergin among others, is a monoaminergic medication of the ergoline class which is used in the treatment of Parkinson's disease, migraine, and high prolactin levels. It is taken by mouth.

<span class="mw-page-title-main">Serotonin receptor agonist</span>

A serotonin receptor agonist is an agonist of one or more serotonin receptors. They activate serotonin receptors in a manner similar to that of serotonin, a neurotransmitter and hormone and the endogenous ligand of the serotonin receptors.

<i>meta</i>-Chlorophenylpiperazine Stimulant

meta-Chlorophenylpiperazine (mCPP) is a psychoactive drug of the phenylpiperazine class. It was initially developed in the late-1970s and used in scientific research before being sold as a designer drug in the mid-2000s. It has been detected in pills touted as legal alternatives to illicit stimulants in New Zealand and pills sold as "ecstasy" in Europe and the United States.

<span class="mw-page-title-main">Naphthylaminopropane</span> Chemical compound

Naphthylaminopropane (PAL-287) is an experimental drug under investigation as of 2007 for the treatment of alcohol and stimulant addiction.

5-HT<sub>1D</sub> receptor Serotonin receptor which affects locomotion and anxiety in humans

5-hydroxytryptamine (serotonin) receptor 1D, also known as HTR1D, is a 5-HT receptor, but also denotes the human gene encoding it. 5-HT1D acts on the central nervous system, and affects locomotion and anxiety. It also induces vasoconstriction in the brain.

5-HT<sub>1F</sub> receptor Protein-coding gene in the species Homo sapiens

5-hydroxytryptamine (serotonin) receptor 1F, also known as HTR1F is a 5-HT1 receptor protein and also denotes the human gene encoding it.

5-HT<sub>2B</sub> receptor Mammalian protein found in Homo sapiens

5-Hydroxytryptamine receptor 2B (5-HT2B) also known as serotonin receptor 2B is a protein that in humans is encoded by the HTR2B gene. 5-HT2B is a member of the 5-HT2 receptor family that binds the neurotransmitter serotonin (5-hydroxytryptamine, 5-HT).

Dopamine receptor D<sub>3</sub> Subtype of the dopamine receptor protein

Dopamine receptor D3 is a protein that in humans is encoded by the DRD3 gene.

<span class="mw-page-title-main">Ro60-0175</span> Chemical compound

Ro60-0175 is a drug developed by Hoffmann–La Roche, which has applications in scientific research. It acts as a potent and selective agonist for both the 5-HT2B and 5-HT2C serotonin receptor subtypes, with good selectivity over the closely related 5-HT2A subtype, and little or no affinity at other receptors.

<span class="mw-page-title-main">WAY-100135</span> Chemical compound

WAY-100135 is a serotonergic drug of the phenylpiperazine family which is used in scientific research. It acts as potent 5-HT1A receptor antagonist, and was originally believed to be highly selective, but further studies have demonstrated that it also acts as a partial agonist of the 5-HT1D receptor (pKi = 7.58; virtually the same affinity for 5-HT1A), and to a much lesser extent, of the 5-HT1B receptor (pKi = 5.82). These findings may have prompted the development of the related compound WAY-100635, another purportedly selective and even more potent 5-HT1A antagonist, which was synthesized shortly thereafter. However, WAY-100635 turned out to be non-selective as well, having been shown to act additionally as a potent D4 receptor agonist later on.

<span class="mw-page-title-main">PNU-22394</span>

PNU-22394 is a drug which acts as an agonist at serotonin 5-HT2 receptors, with strongest binding affinity for 5-HT2A and 5-HT2C and slightly weaker at 5-HT2B, although it is only a full agonist at 5-HT2C, but partial agonist at 5-HT2A and 5-HT2B. It has anorectic effects in both animal studies and human trials, along with "Pro-Cognitive Properties", although it has never been developed for medical use.

<span class="mw-page-title-main">Serotonin antagonist and reuptake inhibitor</span> Class of drug

Serotonin antagonist and reuptake inhibitors (SARIs) are a class of drugs used mainly as antidepressants, but also as anxiolytics and hypnotics. They act by antagonizing serotonin receptors such as 5-HT2A and inhibiting the reuptake of serotonin, norepinephrine, and/or dopamine. Additionally, most also antagonize α1-adrenergic receptors. The majority of the currently marketed SARIs belong to the phenylpiperazine class of compounds.

Osemozotan (MKC-242) is a selective 5-HT1A receptor agonist with some functional selectivity, acting as a full agonist at presynaptic and a partial agonist at postsynaptic 5-HT1A receptors. 5-HT1A receptor stimulation influences the release of various neurotransmitters including serotonin, dopamine, norepinephrine, and acetylcholine. 5-HT1A receptors are inhibitory G protein-coupled receptor. Osemozotan has antidepressant, anxiolytic, antiobsessional, serenic, and analgesic effects in animal studies, and is used to investigate the role of 5-HT1A receptors in modulating the release of dopamine and serotonin in the brain, and their involvement in addiction to abused stimulants such as cocaine and methamphetamine.

5-HT2C receptor agonists are a class of drugs that activate 5-HT2C receptors. They have been investigated for the treatment of a number of conditions including obesity, psychiatric disorders, sexual dysfunction and urinary incontinence.

<span class="mw-page-title-main">CP-122,288</span> Chemical compound

CP-122,288 is a drug which acts as a potent and selective agonist for the 5-HT1B, 5-HT1D and 5-HT1F serotonin receptor subtypes. It is a derivative of the migraine medication sumatriptan, but while CP-122,288 is 40,000 times more potent than sumatriptan as an inhibitor of neurogenic inflammation and plasma protein extravasation, it is only twice as potent as a constrictor of blood vessels. In human trials, CP-122,288 was not found to be effective as a treatment for migraine, but its selectivity for neurogenic anti-inflammatory action over vasoconstriction has made it useful for research into the underlying causes of migraine.

References

  1. Pregenzer, JF; Alberts, GL; Im, WB; Slightom, JL; Ennis, MD; Hoffman, RL; Ghazal, NB; Tenbrink, RE (1999). "Differential pharmacology between the guinea-pig and the gorilla 5-HT1D receptor as probed with isochromans (5-HT1D-selective ligands)". British Journal of Pharmacology . 127 (2): 468–72. doi:10.1038/sj.bjp.0702532. PMC   1566017 . PMID   10385247.
  2. PNU 142633, Santa Cruz Biotechnology
  3. Fleishaker, JC; Pearson, LK; Knuth, DW; Gomez-Mancilla, B; Francom, SF; McIntosh, MJ; Freestone, S; Azie, NE (1999). "Pharmacokinetics and tolerability of a novel 5-HT1D agonist, PNU-142633F". International Journal of Clinical Pharmacology and Therapeutics. 37 (10): 487–92. PMID   10543315.
  4. The serotonin system : history, neuropharmacology, and pathology. M. D. Tricklebank, Eileen Daly. London, United Kingdom. 2019. ISBN   978-0-12-813324-8. OCLC   1105199268.{{cite book}}: CS1 maint: others (link)