Ketanserin

Last updated
Ketanserin
Ketanserin.png
Ketanserin 3D.png
Clinical data
Trade names Sufrexal
Other namesR41468; R-41468; R-41,468
AHFS/Drugs.com International Drug Names
Routes of
administration
Oral
ATC code
Legal status
Legal status
  • In general: ℞ (Prescription only)
Pharmacokinetic data
Bioavailability 50% [1] [2]
Protein binding 95.0% (mainly albumin [2]
Elimination half-life 10–29 hours [3] [1] [2]
Identifiers
  • 3-{2-[4-(4-fluorobenzoyl)piperidin-1-yl]ethyl}quinazoline-2,4(1H,3H)-dione
CAS Number
PubChem CID
IUPHAR/BPS
DrugBank
ChemSpider
UNII
KEGG
ChEBI
ChEMBL
CompTox Dashboard (EPA)
ECHA InfoCard 100.070.598 OOjs UI icon edit-ltr-progressive.svg
Chemical and physical data
Formula C22H22FN3O3
Molar mass 395.434 g·mol−1
3D model (JSmol)
  • c1ccc2c(c1)c(=O)n(c(=O)[nH]2)CCN3CCC(CC3)C(=O)c4ccc(cc4)F
  • InChI=1S/C22H22FN3O3/c23-17-7-5-15(6-8-17)20(27)16-9-11-25(12-10-16)13-14-26-21(28)18-3-1-2-4-19(18)24-22(26)29/h1-8,16H,9-14H2,(H,24,29) Yes check.svgY
  • Key:FPCCSQOGAWCVBH-UHFFFAOYSA-N Yes check.svgY
   (verify)

Ketanserin (INN, USAN, BAN) (brand name Sufrexal; former developmental code name R41468) is a drug used clinically as an antihypertensive agent and in scientific research to study the serotonergic system; specifically, the 5-HT2 receptor family. [4] It was discovered at Janssen Pharmaceutica in 1980. [5] [6] It is not available in the United States. [1]

Contents

Uses

Medical uses

Ketanserin is classified as an antihypertensive by the World Health Organization [7] and the National Institute of Health. [8]

It has been used to reverse pulmonary hypertension caused by protamine (which in turn was administered to reverse the effects of heparin overdose). [9]

The reduction in hypertension is not associated with reflex tachycardia. [10]

It has been used in cardiac surgery. [11]

A 2000 Cochrane Review found that, compared to placebo, ketanserin did not provide significant relief for people suffering from Raynaud's phenomenon attacks in the setting of progressive systemic sclerosis (an autoimmune disorder). While the frequency of the attacks was unaffected by ketanserin, there was a reduction in the duration of the individual attacks. However, due to the significant adverse effect burden, the authors concluded that ketanserin's utility for this indication is likely unbeneficial. [12]

Ketanserin is a selective 5-HT2A receptor antagonist that was initially developed as an anti-hypertensive medicine. However, now the drug is available as a topical gel formulation for treating wounds, burns, ulcers, and anal fissures. Its action is through the acceleration of epithelialization.

Research uses

With tritium (3H) radioactively labeled ketanserin is used as a radioligand for serotonin 5-HT2 receptors, e.g. in receptor binding assays and autoradiography. [13] This radio-labeling has enabled the study of serotonin 5-HT2A receptor distribution in the human brain. [14]

An autoradiography study of the human cerebellum has found an increasing binding of 3H-ketanserin with age (from below 50 femtomol per milligram tissue at around 30 years of age to over 100 above 75 years). [15] The same research team found no significant correlation with age in their homogenate binding study.

Ketanserin has also been used with carbon (11C) radioactively labeled NNC112 in order to image cortical D1 receptors without contamination by 5-HT2 receptors. [16]

Increasing research into the use of psychedelics as antidepressants has seen ketanserin used to both block the hallucinogenic experience, and to disentangle the specific cognitive effects of 5-HT2A activation. [17]

Pharmacology

Human molecular targets of ketanserin [18] [19]
TargetAffinity (Ki)Ref(s)
α1A-adrenergic 6.3 nM [19]
α1B-adrenergic 6.3 nM [19]
α1D-adrenergic 16 nM [19]
α2A-adrenergic 372 nM (HT29) [18]
α2B-adrenergic 199 nM [18]
α2C-adrenergic 159 nM (opossum) [18]
5-HT1A 1,044–>10,000 nM [19] [18]
5-HT1B 2,515–6,300 nM [19] [18]
5-HT1D 32–>10,000 nM [19] [20] [21]
5-HT1E >10,000 nM [18]
5-HT1F 1.25–>10,000 nM [18]
5-HT2A 0.20–9.8 nM [19] [18]
5-HT2B 200–3,236 nM [19] [18]
5-HT2C 17–186 nM [19] [18]
5-HT3 >10,000 nM (rodent) [18]
5-HT4L 1,000 nM (rat) [18]
5-HT5A 20,000 nM [19] [18]
5-HT5B 1,000–1,585 nM (rodent) [18]
5-HT6 2,800 nM [18]
5-HT7 320–1,334 nM [19] [18]
D1 190–464 nM [18]
D2 >10,000 nM [18]
D3  ?
D4 148 nM (canine) [18]
D5 2,500 nM [19] [18]
H1 1.79 nM [18]
DAT >10,000 nM [18]
VMAT1 1,600 nM [19]
VMAT2 500 nM [19]

Pharmacodynamics

Ketanserin is a high-affinity non-selective antagonist of 5-HT2 receptors in rodents, [18] [22] [20] In addition to the 5-HT2 receptors, ketanserin is also a high affinity antagonist for the H1 receptor. [23] It has also been found to block the vesicular monoamine transporter 2 (VMAT2). [24] [25]

Pharmacokinetics

The bioavailability of ketanserin is 50%. [1] [2] The plasma protein binding of ketanserin is 95.0% and it is mainly bound to albumin. [2] The elimination half-life of ketanserin is 10 to 29 hours. [3] [1]

Synthesis

Thieme Patents: Sino: Revised: Analogues Ketanserin synthesis.svg
Thieme Patents: Sino: Revised: Analogues

Either 3-(2-Chloroethyl)quinazoline-2,4(1H,3H)-dione [5081-87-8] (1a), or alternatively 2,3-dihydro-[1,3]oxazolo[2,3-b]quinazolin-5-one [52727-44-3] (1b) can be used as starting material. Attachment of the sidechain to 4-(4-Fluorobenzoyl)piperidine [56346-57-7] (2) completes synthesis synthesis of Ketanserin (3).

See also

Related Research Articles

<span class="mw-page-title-main">Propranolol</span> Beta blocker drug

Propranolol, sold under the brand name Inderal among others, is a medication of the beta blocker class. It is used to treat high blood pressure, a number of types of irregular heart rate, thyrotoxicosis, capillary hemangiomas, performance anxiety, and essential tremors, as well to prevent migraine headaches, and to prevent further heart problems in those with angina or previous heart attacks. It can be taken by mouth or by injection into a vein. The formulation that is taken by mouth comes in short-acting and long-acting versions. Propranolol appears in the blood after 30 minutes and has a maximum effect between 60 and 90 minutes when taken by mouth.

<span class="mw-page-title-main">Maprotiline</span> Antidepressant

Maprotiline, sold under the brand name Ludiomil among others, is a tetracyclic antidepressant (TeCA) that is used in the treatment of depression. It may alternatively be classified as a tricyclic antidepressant (TCA), specifically a secondary amine. In terms of its chemistry and pharmacology, maprotiline is closely related to other secondary amine TCAs like nortriptyline and protriptyline, and has similar effects to them.

<span class="mw-page-title-main">Pindolol</span> Chemical compound

Pindolol, sold under the brand name Visken among others, is a nonselective beta blocker which is used in the treatment of hypertension. It is also an antagonist of the serotonin 5-HT1A receptor, preferentially blocking inhibitory 5-HT1A autoreceptors, and has been researched as an add-on therapy to selective serotonin reuptake inhibitors (SSRIs) in the treatment of depression.

<span class="mw-page-title-main">Phenoxybenzamine</span> Chemical compound

Phenoxybenzamine is a non-selective, irreversible alpha blocker.

<span class="mw-page-title-main">Methylergometrine</span> Chemical compound

Methylergometrine, also known as methylergonovine and sold under the brand name Methergine, is a medication of the ergoline and lysergamide groups which is used as an oxytocic in obstetrics and in the treatment of migraine. It reportedly produces psychedelic effects similar to those of lysergic acid diethylamide (LSD) at high doses.

<span class="mw-page-title-main">Ritanserin</span> Chemical compound

Ritanserin, also known by its developmental code name R-55667, is a serotonin antagonist medication described as an anxiolytic, antidepressant, antiparkinsonian agent, and antihypertensive agent. It was chiefly investigated as a drug to treat insomnia, especially to enhance sleep quality by significantly increasing slow wave sleep by virtue of potent and concomitant 5HT2a and 5HT2c antagonism

<span class="mw-page-title-main">Lisuride</span> Chemical compound

Lisuride, sold under the brand name Dopergin among others, is a monoaminergic medication of the ergoline class which is used in the treatment of Parkinson's disease, migraine, and high prolactin levels. It is taken by mouth.

5-HT<sub>2A</sub> receptor Subtype of serotonin receptor

The 5-HT2A receptor is a subtype of the 5-HT2 receptor that belongs to the serotonin receptor family and is a G protein-coupled receptor (GPCR). The 5-HT2A receptor is a cell surface receptor, but has several intracellular locations. 5-HT is short for 5-hydroxy-tryptamine or serotonin. This is the main excitatory receptor subtype among the GPCRs for serotonin, although 5-HT2A may also have an inhibitory effect on certain areas such as the visual cortex and the orbitofrontal cortex. This receptor was first noted for its importance as a target of serotonergic psychedelic drugs such as LSD and psilocybin mushrooms. Later it came back to prominence because it was also found to be mediating, at least partly, the action of many antipsychotic drugs, especially the atypical ones.

<span class="mw-page-title-main">Mianserin</span> Antidepressant

Mianserin, sold under the brand name Tolvon among others, is an atypical antidepressant that is used primarily in the treatment of depression in Europe and elsewhere in the world. It is a tetracyclic antidepressant (TeCA). Mianserin is closely related to mirtazapine, both chemically and in terms of its actions and effects, although there are significant differences between the two drugs.

<span class="mw-page-title-main">Pipamperone</span> Antipsychotic drug

Pipamperone, also known as carpiperone and floropipamide or fluoropipamide, and as floropipamide hydrochloride (JAN), is a typical antipsychotic of the butyrophenone family used in the treatment of schizophrenia and as a sleep aid for depression. It is or has been marketed under brand names including Dipiperon, Dipiperal, Piperonil, Piperonyl, and Propitan. Pipamperone was discovered at Janssen Pharmaceutica in 1961, and entered clinical trials in the United States in 1963.

5-HT<sub>3</sub> antagonist Anti-nausea group of medications

The 5-HT3 antagonists, informally known as "setrons", are a class of drugs that act as receptor antagonists at the 5-HT3 receptor, a subtype of serotonin receptor found in terminals of the vagus nerve and in certain areas of the brain. With the notable exceptions of alosetron and cilansetron, which are used in the treatment of irritable bowel syndrome, all 5-HT3 antagonists are antiemetics, used in the prevention and treatment of nausea and vomiting. They are particularly effective in controlling the nausea and vomiting produced by cancer chemotherapy and are considered the gold standard for this purpose.

A serotonin antagonist, or serotonin receptor antagonist, is a drug used to inhibit the action of serotonin and serotonergic drugs at serotonin (5-HT) receptors.

5-HT<sub>1A</sub> receptor Serotonin receptor protein distributed in the cerebrum and raphe nucleus

The serotonin 1A receptor is a subtype of serotonin receptors, or 5-HT receptors, that binds serotonin, also known as 5-HT, a neurotransmitter. 5-HT1A is expressed in the brain, spleen, and neonatal kidney. It is a G protein-coupled receptor (GPCR), coupled to the Gi protein, and its activation in the brain mediates hyperpolarisation and reduction of firing rate of the postsynaptic neuron. In humans, the serotonin 1A receptor is encoded by the HTR1A gene.

5-HT<sub>2B</sub> receptor Mammalian protein found in Homo sapiens

5-Hydroxytryptamine receptor 2B (5-HT2B) also known as serotonin receptor 2B is a protein that in humans is encoded by the HTR2B gene. 5-HT2B is a member of the 5-HT2 receptor family that binds the neurotransmitter serotonin (5-hydroxytryptamine, 5-HT).

5-HT<sub>7</sub> receptor Protein-coding gene in the species Homo sapiens

The 5-HT7 receptor is a member of the GPCR superfamily of cell surface receptors and is activated by the neurotransmitter serotonin (5-hydroxytryptamine, 5-HT) The 5-HT7 receptor is coupled to Gs (stimulates the production of the intracellular signaling molecule cAMP) and is expressed in a variety of human tissues, particularly in the brain, the gastrointestinal tract, and in various blood vessels. This receptor has been a drug development target for the treatment of several clinical disorders. The 5-HT7 receptor is encoded by the HTR7 gene, which in humans is transcribed into 3 different splice variants.

<span class="mw-page-title-main">WAY-100635</span> Chemical compound

WAY-100635 is a piperazine drug and research chemical widely used in scientific studies. It was originally believed to act as a selective 5-HT1A receptor antagonist, but subsequent research showed that it also acts as potent full agonist at the D4 receptor. It is sometimes referred to as a silent antagonist at the former receptor. It is closely related to WAY-100135.

<span class="mw-page-title-main">Quipazine</span> Chemical compound

Quipazine is a serotonergic drug of the piperazine group which is used in scientific research. It was originally intended as an antidepressant but never developed for medical use.

<span class="mw-page-title-main">Serotonin antagonist and reuptake inhibitor</span> Class of drug

Serotonin antagonist and reuptake inhibitors (SARIs) are a class of drugs used mainly as antidepressants, but also as anxiolytics and hypnotics. They act by antagonizing serotonin receptors such as 5-HT2A and inhibiting the reuptake of serotonin, norepinephrine, and/or dopamine. Additionally, most also antagonize α1-adrenergic receptors. The majority of the currently marketed SARIs belong to the phenylpiperazine class of compounds.

<span class="mw-page-title-main">Clorotepine</span> Chemical compound

Clorotepine, also known as octoclothepin or octoclothepine, is an antipsychotic of the tricyclic group which was derived from perathiepin in 1965 and marketed in the Czech Republic by Spofa in or around 1971 for the treatment of schizophrenic psychosis.

<span class="mw-page-title-main">Pirenperone</span> Chemical compound

Pirenperone (INN, USAN, BAN; developmental code names R-47456, R-50656) is a serotonin receptor antagonist described as an antipsychotic and tranquilizer which was never marketed. It is a relatively selective antagonist of the serotonin 5-HT2 receptors and has been used in scientific research to study the serotonin system. In the 1980s, the drug was found to block the effects of the lysergic acid diethylamide (LSD) in animals, and along with ketanserin, led to the elucidation of the 5-HT2A receptor as the biological mediator of the effects of serotonergic psychedelics.

References

  1. 1 2 3 4 5 Wolverton SE (8 March 2007). Comprehensive Dermatologic Drug Therapy (2 ed.). Elsevier Health Sciences. ISBN   978-1-4377-2070-9.
  2. 1 2 3 4 5 Hideya Saitō; Masaru Minami, eds. (1992). Antihypertensive Drugs Today. VSP. pp. 191–. ISBN   978-90-6764-140-1. OCLC   231351327.
  3. 1 2 Cold GE, Dahl BL (11 November 2013). Topics in Neuroanaesthesia and Neurointensive Care: Experimental and Clinical Studies upon Cerebral Circulation, Metabolism and Intracranial Pressure. Springer Science & Business Media. pp. 193–. ISBN   978-3-662-04845-0. OCLC   1076237896.
  4. O'Donnell J, Ahuja GD (2005). Drug Injury: Liability, Analysis, and Prevention. Lawyers & Judges Publishing Company. pp. 304–. ISBN   978-0-913875-27-8.
  5. Healy D (1 July 2009). The Creation of Psychopharmacology. Harvard University Press. pp. 252–253. ISBN   978-0-674-03845-5.
  6. Schwartz H (August 1989). Breakthrough: the discovery of modern medicines at Janssen . Skyline Pub. Group. p.  74. ISBN   978-1-56019-100-1.
  7. ATC/DDD Index
  8. Ketanserin
  9. van der Starre PJ, Solinas C (1996). "Ketanserin in the treatment of protamine-induced pulmonary hypertension". Texas Heart Institute Journal. 23 (4): 301–304. PMC   325377 . PMID   8969033.
  10. Hodsman NB, Colvin JR, Kenny GN (May 1989). "Effect of ketanserin on sodium nitroprusside requirements, arterial pressure control and heart rate following coronary artery bypass surgery". British Journal of Anaesthesia. 62 (5): 527–531. doi: 10.1093/bja/62.5.527 . PMID   2786422.
  11. Elbers PW, Ozdemir A, van Iterson M, van Dongen EP, Ince C (February 2009). "Microcirculatory Imaging in Cardiac Anesthesia: Ketanserin Reduces Blood Pressure But Not Perfused Capillary Density". Journal of Cardiothoracic and Vascular Anesthesia. 23 (1): 95–101. doi:10.1053/j.jvca.2008.09.013. PMID   19058975.
  12. Pope J, Fenlon D, Thompson A, Shea B, Furst D, Wells G, Silman A (2000). "Ketanserin for Raynaud's phenomenon in progressive systemic sclerosis". The Cochrane Database of Systematic Reviews. 1998 (2): CD000954. doi:10.1002/14651858.CD000954. PMC   7032891 . PMID   10796396.
  13. Eickhoff SB, Schleicher A, Scheperjans F, Palomero-Gallagher N, Zilles K (February 2007). "Analysis of neurotransmitter receptor distribution patterns in the cerebral cortex". NeuroImage. 34 (4): 1317–1330. doi:10.1016/j.neuroimage.2006.11.016. PMID   17182260. S2CID   23363050.
  14. Pazos A, Probst A, Palacios JM (April 1987). "Serotonin receptors in the human brain--IV. Autoradiographic mapping of serotonin-2 receptors". Neuroscience. 21 (1): 123–139. doi:10.1016/0306-4522(87)90327-7. PMID   3601071. S2CID   23711420.
  15. Eastwood SL, Burnet PW, Gittins R, Baker K, Harrison PJ (November 2001). "Expression of serotonin 5-HT(2A) receptors in the human cerebellum and alterations in schizophrenia". Synapse. 42 (2): 104–114. doi:10.1002/syn.1106. PMID   11574947. S2CID   40304220.
  16. Catafau AM, Searle GE, Bullich S, Gunn RN, Rabiner EA, Herance R, et al. (May 2010). "Imaging cortical dopamine D1 receptors using [11C]NNC112 and ketanserin blockade of the 5-HT 2A receptors". Journal of Cerebral Blood Flow and Metabolism. 30 (5): 985–993. doi:10.1038/jcbfm.2009.269. PMC   2949183 . PMID   20029452.
  17. Quednow BB, Kometer M, Geyer MA, Vollenweider FX (February 2012). "Psilocybin-induced deficits in automatic and controlled inhibition are attenuated by ketanserin in healthy human volunteers". Neuropsychopharmacology. 37 (3): 630–640. doi:10.1038/npp.2011.228. PMC   3260978 . PMID   21956447.
  18. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 NIMH Psychoactive Drug Screening Program
  19. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 "Ketanserin Ligand page". IUPHAR/BPS Guide to PHARMACOLOGY.
  20. 1 2 Meneses A (11 March 2014). The Role of 5-HT Systems on Memory and Dysfunctional Memory: Emergent Targets for Memory Formation and Memory Alterations. Elsevier Science. pp. 23–. ISBN   978-0-12-801083-9.
  21. Olivier B, van Wijngaarden I, Soudijn W (10 July 1997). Serotonin Receptors and their Ligands. Elsevier. pp. 118–. ISBN   978-0-08-054111-2.
  22. Creed-Carson M, Oraha A, Nobrega JN (June 2011). "Effects of 5-HT(2A) and 5-HT(2C) receptor antagonists on acute and chronic dyskinetic effects induced by haloperidol in rats". Behavioural Brain Research. 219 (2): 273–279. doi:10.1016/j.bbr.2011.01.025. PMID   21262266. S2CID   205882443.
  23. Coyne CP (9 January 2008). Comparative Diagnostic Pharmacology: Clinical and Research Applications in Living-System Models. John Wiley & Sons. pp. 104–. ISBN   978-0-470-34429-3.
  24. Muller CP, Jacobs B (30 December 2009). Handbook of the Behavioral Neurobiology of Serotonin. Academic Press. pp. 592–. ISBN   978-0-08-087817-1.
  25. Henry JP, Sagné C, Botton D, Isambert MF, Gasnier B (1998). Molecular pharmacology of the vesicular monoamine transporter. Advances in Pharmacology. Vol. 42. San Diego, Calif.: Academic Press. pp. 236–9 (237). doi:10.1016/s1054-3589(08)60736-x. ISBN   978-0-08-058134-7. PMID   9327887.
  26. US 4335127,Vandenberk J, Kennis L, Van der Aa M, Van Heertum A,issued 1982, assigned to Janssen Pharmaceutica, N.V.
  27. EP 0098499,Signorini R, Verga A,issued 1984, assigned to Ravizza SpA
  28. CN 106866625,Shiwen R, et al.,issued 2017, assigned to Shanghai Ding Ya Pharmaceutical Chemistry Science And Technology Ltd)
  29. Fakhraian H, Heydary M (January 2014). "Reinvestigation of the Synthesis of Ketanserin (5) and its Hydrochloride Salt (5. HCl) via 3‐(2‐Chloroethyl)‐2, 4‐(1H, 3H)‐quinazolinedione (2) or Dihydro‐5H‐oxazole (2, 3‐b) quinazolin‐5‐one (1)". Journal of Heterocyclic Chemistry. 51 (1): 151–156. doi:10.1002/jhet.1897..
  30. Herndon JL, Ismaiel A, Ingher SP, Teitler M, Glennon RA (December 1992). "Ketanserin analogues: structure-affinity relationships for 5-HT2 and 5-HT1C serotonin receptor binding". Journal of Medicinal Chemistry. 35 (26): 4903–10. doi:10.1021/jm00104a017. PMID   1479590.