Spaceguard

Last updated
Plot of orbits of known potentially hazardous asteroids (size over 140 metres (460 ft) and passing within 7.6 million kilometres (4.7x10
^
mi) of Earth's orbit) as of early 2013 (alternative image). Potentially Hazardous Asteroids 2013.png
Plot of orbits of known potentially hazardous asteroids (size over 140 metres (460 ft) and passing within 7.6 million kilometres (4.7×10^ mi) of Earth's orbit) as of early 2013 (alternative image).

The term Spaceguard loosely refers to a number of efforts to discover, catalogue, and study near-Earth objects (NEO), especially those that may impact Earth (potentially hazardous objects).

Contents

Asteroids are discovered by telescopes which repeatedly survey large areas of sky. Efforts which concentrate on discovering NEOs are considered part of the "Spaceguard Survey," regardless of which organization they are affiliated with.

A number of organizations have also raised related discussions and proposals on asteroid-impact avoidance.

History

Arthur C. Clarke coined the term in his novel Rendezvous with Rama (1973) where "Project Spaceguard" was the name of an early warning system created following a fictional catastrophic asteroid impact. [1] This name was later adopted by a number of real life efforts to discover and study near-Earth objects. The name was used for the Survey "with the permission and encouragement of Clarke." [2] A 1992 US Congressional study produced a "Spaceguard Survey Report" [3] which led to a mandate that NASA locate 90% of near-Earth asteroids larger than 1 km within 10 years. This is often referred to as the "Spaceguard Goal." A number of efforts which receive money through NASA are all considered to be working on the "Spaceguard Project."

The effect of the impact of Comet Shoemaker–Levy 9 to Jupiter in July 1994 created a greater perception of importance to the detection of near Earth objects. As David Levy stated in an interview "The giggle factor disappeared after Shoemaker-Levy 9." He was referring to the contemporary attitude that extinction level events were so improbable that those advocating for research for detection and possible deflection methods were only paranoid alarmists. The impact of one of its fragments created a giant dark spot on Jupiter over 12,000 km across, and was estimated to have released an energy equivalent to 6 teratons of TNT (600 times the world's nuclear arsenal). After the impact of Comet Shoemaker-Levy 9, asteroid detection programs all over the world received greater funding. [4]

The Working Group on Near-Earth Objects (WGNEO) of the International Astronomical Union held a workshop in 1995 entitled Beginning the Spaceguard Survey [5] which led to an international organization called the Spaceguard Foundation. Subsequently, there have been Spaceguard associations or foundations formed in countries around the world to support the ideas of discovering and studying near-Earth objects. Generally, the Spaceguard organizations formed within individual countries are associated with the international foundation or with the NASA efforts only by name, common interests, and similar goals.

The initial Spaceguard Goal was achieved, although in slightly longer than 10 years. An extension to the project gave NASA the mandate of reducing the minimum size at which more than 90% of near-Earth asteroids are known to 140 m. [6]

Observations

The 2002 Eastern Mediterranean event and the Chelyabinsk meteor (Russia, February 2013) were not detected in advance by any Spaceguard effort. On October 6, 2008, the 4-meter 2008 TC3 meteoroid was detected by the Catalina Sky Survey (CSS) 1.5 meter telescope at Mount Lemmon, and monitored until it hit the Earth the next day.

New survey projects, such as the Asteroid Terrestrial-impact Last Alert System (ATLAS) program [7] [8] operated by the University of Hawaii, aim to greatly increase the number of small (down to approximately 10 m) impactors that are discovered before atmospheric entry—typically with days to weeks of warning, enabling evacuations of the affected areas and damage mitigation planning. This is in contrast to other surveys which focus on finding much larger (greater than 100 m) objects years to decades before any potential impacts, at times when they could potentially still be deflected away from Earth.

Another short-term warning system is the NASA Scout program that came into operation in 2016. [9] [10] [11]

On October 19, 2017, one of the Survey telescopes, Pan-STARRS 1, discovered the first interstellar asteroid, 'Oumuamua. [2] [12]

The United Kingdom also hosts the self-styled Spaceguard Centre which conducts astrometric research (MPC code J26) and is open to the general public daily, but it is not affiliated with or supported by any public body. [13]

Issues

According to Dr. Michael F. A'Hearn, a typical mission would take too long from approval to launch if there was an emergency:

REP. STEWART: ... are we technologically capable of launching something that could intercept [an asteroid]? ... DR. A'HEARN: No. If we had spacecraft plans on the books already, that would take a year ... I mean a typical small mission ... takes four years from approval to start to launch ...

Lack of a master plan and dangers of false alarms have been pointed out by Stefan Lövgren. [15]

See also

Related Research Articles

<span class="mw-page-title-main">Asteroid</span> Minor planets found within the inner Solar System

An asteroid is a minor planet—an object that is neither a true planet nor a comet—that orbits within the inner Solar System. They are rocky, metallic, or icy bodies with no atmosphere. The size and shape of asteroids vary significantly, ranging from small rubble piles under a kilometer across to Ceres, a dwarf planet almost 1000 km in diameter.

<span class="mw-page-title-main">Near-Earth object</span> Small Solar System body with an orbit that can bring it close to Earth

A near-Earth object (NEO) is any small Solar System body orbiting the Sun whose closest approach to the Sun (perihelion) is less than 1.3 times the Earth–Sun distance. This definition applies to the object's orbit around the Sun, rather than its current position, thus an object with such an orbit is considered an NEO even at times when it is far from making a close approach of Earth. If an NEO's orbit crosses the Earth's orbit, and the object is larger than 140 meters (460 ft) across, it is considered a potentially hazardous object (PHO). Most known PHOs and NEOs are asteroids, but about 0.35% are comets.

<span class="mw-page-title-main">Meteoroid</span> Sand- to boulder-sized particle of debris in the Solar System

A meteoroid is a small rocky or metallic body in outer space. Meteoroids are distinguished as objects significantly smaller than asteroids, ranging in size from grains to objects up to a meter wide. Objects smaller than meteoroids are classified as micrometeoroids or space dust. Many are fragments from comets or asteroids, whereas others are collision impact debris ejected from bodies such as the Moon or Mars.

<span class="mw-page-title-main">Impact event</span> Collision of two astronomical objects

An impact event is a collision between astronomical objects causing measurable effects. Impact events have been found to regularly occur in planetary systems, though the most frequent involve asteroids, comets or meteoroids and have minimal effect. When large objects impact terrestrial planets such as the Earth, there can be significant physical and biospheric consequences, as the impacting body is usually traveling at several kilometres a second, though atmospheres mitigate many surface impacts through atmospheric entry. Impact craters and structures are dominant landforms on many of the Solar System's solid objects and present the strongest empirical evidence for their frequency and scale.

<span class="mw-page-title-main">Asteroid impact avoidance</span> Methods to prevent destructive asteroid hits

Asteroid impact avoidance comprises the methods by which near-Earth objects (NEO) on a potential collision course with Earth could be diverted away, preventing destructive impact events. An impact by a sufficiently large asteroid or other NEOs would cause, depending on its impact location, massive tsunamis or multiple firestorms, and an impact winter caused by the sunlight-blocking effect of large quantities of pulverized rock dust and other debris placed into the stratosphere. A collision 66 million years ago between the Earth and an object approximately 10 kilometers wide is thought to have produced the Chicxulub crater and triggered the Cretaceous–Paleogene extinction event that is understood by the scientific community to have caused the extinction of all non-avian dinosaurs.

<span class="mw-page-title-main">Eugene Merle Shoemaker</span> American geologist and astronomer (1928–1997)

Eugene Merle Shoemaker was an American geologist. He co-discovered Comet Shoemaker–Levy 9 with his wife Carolyn S. Shoemaker and David H. Levy. This comet hit Jupiter in July 1994: the impact was televised around the world. Shoemaker also studied terrestrial craters, such as Barringer Meteor Crater in Arizona, and along with Edward Chao provided the first conclusive evidence of its origin as an impact crater. He was also the first director of the United States Geological Survey's Astrogeology Research Program.

<span class="mw-page-title-main">B612 Foundation</span> Planetary defense nonprofit organization

The B612 Foundation is a private nonprofit foundation headquartered in Mill Valley, California, United States, dedicated to planetary science and planetary defense against asteroids and other near-Earth object (NEO) impacts. It is led mainly by scientists, former astronauts and engineers from the Institute for Advanced Study, Southwest Research Institute, Stanford University, NASA and the space industry.

Near-Earth Asteroid Tracking (NEAT) was a program run by NASA and the Jet Propulsion Laboratory, surveying the sky for near-Earth objects. NEAT was conducted from December 1995 until April 2007, at GEODSS on Hawaii, as well as at Palomar Observatory in California. With the discovery of more than 40 thousand minor planets, NEAT has been one of the most successful programs in this field, comparable to the Catalina Sky Survey, LONEOS and Mount Lemmon Survey.

<span class="mw-page-title-main">Catalina Sky Survey</span> Project to discover comets, asteroids, and near-Earth objects

Catalina Sky Survey is an astronomical survey to discover comets and asteroids. It is conducted at the Steward Observatory's Catalina Station, located near Tucson, Arizona, in the United States.

<span class="mw-page-title-main">Pan-STARRS</span> Multi-telescope astronomical survey

The Panoramic Survey Telescope and Rapid Response System located at Haleakala Observatory, Hawaii, US, consists of astronomical cameras, telescopes and a computing facility that is surveying the sky for moving or variable objects on a continual basis, and also producing accurate astrometry and photometry of already-detected objects. In January 2019 the second Pan-STARRS data release was announced. At 1.6 petabytes, it is the largest volume of astronomical data ever released.

<span class="mw-page-title-main">Peter Jenniskens</span> Dutch astronomer

Petrus Matheus Marie (Peter) Jenniskens is a Dutch-American astronomer and a senior research scientist at the Carl Sagan Center of the SETI Institute and at NASA Ames Research Center. He is an expert on meteor showers, and wrote the book Meteor Showers and their Parent Comets, published in 2006 and Atlas of Earth’s Meteor Showers, published in 2023. He is past president of Commission 22 of the International Astronomical Union (2012–2015) and was chair of the Working Group on Meteor Shower Nomenclature (2006–2012) after it was first established. Asteroid 42981 Jenniskens is named in his honor.

2007 WD5 is an Apollo asteroid some 50 m (160 ft) in diameter and a Mars-crosser asteroid first observed on 20 November 2007, by Andrea Boattini of the Catalina Sky Survey. Early observations of 2007 WD5 caused excitement amongst the scientific community when it was estimated as having as high as a 1 in 25 chance of colliding with Mars on 30 January 2008. However, by 9 January 2008, additional observations allowed NASA's Near Earth Object Program (NEOP) to reduce the uncertainty region resulting in only a 1-in-10,000 chance of impact. 2007 WD5 most likely passed Mars at a distance of 6.5 Mars radii. Due to this relatively small distance and the uncertainty level of the prior observations, the gravitational effects of Mars on its trajectory are unknown and, according to Steven Chesley of NASA's Jet Propulsion Laboratory Near-Earth Object program, 2007 WD5 is currently considered 'lost' (see lost asteroids).

<span class="nowrap">2008 TC<sub>3</sub></span> 2008 asteroid-type meteoroid

2008 TC3 (Catalina Sky Survey temporary designation 8TA9D69) was an 80-tonne (80-long-ton; 90-short-ton), 4.1-meter (13 ft) diameter asteroid that entered Earth's atmosphere on October 7, 2008. It exploded at an estimated 37 kilometers (23 mi) above the Nubian Desert in Sudan. Some 600 meteorites, weighing a total of 10.5 kilograms (23.1 lb), were recovered; many of these belonged to a rare type known as ureilites, which contain, among other minerals, nanodiamonds.

<span class="mw-page-title-main">Interstellar object</span> Astronomical object not gravitationally bound to a star

An interstellar object is an astronomical object in interstellar space that is not gravitationally bound to a star. This term can also be applied to an object that is on an interstellar trajectory but is temporarily passing close to a star, such as certain asteroids and comets. In the latter case, the object may be called an interstellar interloper.

<span class="mw-page-title-main">NEO Surveyor</span> Space-based infrared telescope

NEO Surveyor, formerly called Near-Earth Object Camera (NEOCam), then NEO Surveillance Mission, is a planned space-based infrared telescope designed to survey the Solar System for potentially hazardous asteroids.

<span class="mw-page-title-main">Sentinel Space Telescope</span> Killer asteroid detector canceled as of 2017

The Sentinel Space Telescope was a space observatory to be developed by Ball Aerospace & Technologies for the B612 Foundation. The B612 Foundation is dedicated to protecting the Earth from dangerous asteroid strikes and Sentinel was to be the Foundation's first spacecraft tangibly to address that mission.

The Asteroid Terrestrial-impact Last Alert System (ATLAS) is a robotic astronomical survey and early warning system optimized for detecting smaller near-Earth objects a few weeks to days before they impact Earth.

The Qingyang event was a presumed meteor shower or air burst that took place near Qingyang in March or April 1490. The area was at the time part of Shaanxi, but is now in Gansu province. A 1994 study in the journal Meteoritics tentatively explained this event as a meteor air burst.

Anthony Wesley is an Australian computer programmer and amateur astronomer, known for his discoveries of the 2009 and 2010 Jupiter impact events.

<span class="mw-page-title-main">Asteroid impact prediction</span> Prediction of the dates and times of asteroids impacting Earth

Asteroid impact prediction is the prediction of the dates and times of asteroids impacting Earth, along with the locations and severities of the impacts.

References

  1. Michael Paine (2000-04-26), "Bigger Telescopes Seek Killer Asteroids", Space.com (accessed on 2010-06-26)
  2. 1 2 Morrison, David (2018). "Interstellar Visitor: The Strange Asteroid from a Faraway System". Skeptical Inquirer. 42 (2): 5–6.
  3. David Morrison (1992), "The Spaceguard Survey Report Archived 2010-01-08 at the Wayback Machine ", NASA Studies Archived 2010-05-27 at the Wayback Machine at Asteroid and Comet Impact Hazards, NASA Ames Research Center.
  4. Levy, David H. (2010). Cosmic Discoveries: The Wonders of Astronomy. Prometheus Books. p.  169. ISBN   978-1615925667. In January 1993, [Levy] attended a meeting about hazards that could be caused from comets and asteroids. One of the biggest concerns that attending scientists had was what to do about the "giggle factor." Whenever anyone suggested that comets could post a hazard, the press responded with sarcasm. In those early days of 1993, it was difficult to make anyone take the threat seriously. [...] How could anyone know that at that meeting three of its participants would discover, within a few weeks, a comet that would spotlight the consequences of impacts very effectively?
  5. Beginning the Spaceguard Survey Archived 2011-07-22 at the Wayback Machine , Vulcano Workshop (1995), IAU Working Group on Near-Earth Objects. (accessed on 2010-06-26)
  6. Harris, Alan. What Spaceguard did, Nature , Vol. 453, pp. 1178–1179, June 26, 2008, doi : 10.1038/4531178a; Published online 25 June 2008 (subscription required).
  7. Asteroid Terrestrial-impact Last Alert System Project (ATLAS), FallingStar.com website, last revised on March 29, 2013.
  8. Tonry, John L. An Early Warning System for Asteroid Impact (thesis), Cornell University Library, submitted on November 3, 2010.
  9. Gough, Evan (November 2, 2016). "NASA's New Asteroid Alert System Gives 5 Whole Days of Warning".
  10. NASA's New 'Intruder Alert' System Spots An Incoming Asteroid
  11. Nola Taylor Tillman (September 23, 2016). "Incoming! New Warning System Tracks Potentially Dangerous Asteroids". Space.com.
  12. "ESO Observations Show First Interstellar Asteroid is Like Nothing Seen Before". European Southern Observatory. Archived from the original on 15 May 2018. Retrieved 15 May 2018.
  13. "The Spaceguard Centre | The National Near Earth Objects Information Centre". spaceguardcentre.com.
  14. U.S.Congress (Spring 2013). "Threats From Space: a Review of U.S. Government Efforts to Track and mitigate Asteroids and Meteors (Part I and Part II) - Hearing Before the Committee on Science, Space, and Technology House of Representatives One Hundred Thirteenth Congress First Session" (PDF). United States Congress (Hearings held 19 March 2013 and 10 April 2013). p. 147. Retrieved 3 May 2014.
  15. Stefan Lovgren (2004-03-08), "Asteroid False Alarm Shows Limits of Alert Systems, National Geographic News. (accessed on 2010-06-26)

Further reading