Duplicate characters in Unicode

Last updated

Unicode has a certain amount of duplication of characters. These are pairs of single Unicode code points that are canonically equivalent. The reason for this are compatibility issues with legacy systems.

Contents

Unless two characters are canonically equivalent, they are not "duplicate" in the narrow sense. There is, however, room for disagreement on whether two Unicode characters really encode the same grapheme in cases such as the U+00B5µ MICRO SIGN versus U+03BCμ GREEK SMALL LETTER MU.

This should be clearly distinguished from Unicode characters that are rendered as identical glyphs or near-identical glyphs (homoglyphs), either because they are historically cognate (such as Greek Η vs. Latin H) or because of coincidental similarity (such as Greek Ρ vs. Latin P, or Greek Η vs. Cyrillic Н, or the following homoglyph septuplet: astronomical symbol for "Sun" , "circled dot operator" , the Gothic letter 𐍈, the IPA symbol for a bilabial click ʘ , the Osage letter 𐓃, the Tifinagh letter ⵙ, and the archaic Cyrillic letter ).

Duplicate vs. derived character

Unicode aims at encoding graphemes, not individual "meanings" ("semantics") of graphemes, and not glyphs. It is a matter of case-by-case judgement whether such characters should receive separate encoding when used in technical contexts, e.g. Greek letters used as mathematical symbols: thus, the choice to have a "micro- sign" µ separate from Greek μ, but not a "Mega sign" separate from Latin M, was a pragmatic decision by the Unicode consortium for historical reasons (namely, compatibility with Latin-1, which included a micro sign). Technically µ and μ are not duplicate characters in that the consortium viewed these symbols as distinct characters (while it regarded M for "Mega" and Latin M as one and the same character).

Note that merely having different "meanings" is not sufficient grounds to split a grapheme into several characters: Thus, the acute accent may represent word accent in Welsh or Swedish, it may express vowel quality in French, and it may express vowel length in Hungarian, Icelandic or Irish. Since all these languages are written in the same script, namely Latin script, the acute accent in its various meanings is considered one and the same combining diacritic character (U+0301), and so the accented letter é is the same character in French and Hungarian. There is a separate "combining diacritic acute tone mark" at U+0341 for the romanization of tone languages, one important difference from the acute accent being that in a language like French, the acute accent can replace the dot over the lowercase i, whereas in a language like Vietnamese, the acute tone mark is added above the dot. Diacritic signs for alphabets considered independent may be encoded separately, such as the acute ("tonos") for the Greek alphabet at U+0384, and for the Armenian alphabet at U+055B. Some Cyrillic-based alphabets (such as Russian) also use the acute accent, but there is no "Cyrillic acute" encoded separately and U+0301 should be used for Cyrillic as well as Latin (see Cyrillic characters in Unicode). The point that the same grapheme can have many "meanings" is even more obvious considering e.g. the letter U, which has entirely different phonemic referents in the various languages that use it in their orthographies (English /juː/,/ʊ/,/ʌ/ etc., French /y/, German /uː/,/u/, etc., not to mention various uses of U as a symbol).

Compatibility issues

CJK fullwidth forms

In traditional Chinese character encodings, characters usually took either a single byte (known as halfwidth) or two bytes (known as fullwidth). Characters that took a single byte were generally displayed at half the width of those that took two bytes. Some characters such as the Latin alphabet were available in both halfwidth and fullwidth versions. As the halfwidth versions were more commonly used, they were generally the ones mapped to the standard code points for those characters. Therefore a separate section was needed for the fullwidth forms to preserve the distinction.

Letterlike symbols

In some cases, specific graphemes have acquired a specialized symbolic or technical meaning separate from their original function. A prominent example is the Greek letter π which is widely recognized as the symbol for the mathematical constant of a circle's circumference divided by its diameter even by people not literate in Greek.

Several variants of the entire Greek and Latin alphabets specifically for use as mathematical symbols are encoded in the Mathematical Alphanumeric Symbols range. This range disambiguates characters that would usually be considered font variants but are encoded separately because of widespread use of font variants (e.g. L vs. "script L" vs. "blackletter L" 𝔏 vs. "boldface blackletter L" 𝕷) as distinctive mathematical symbols. It is intended for use only in mathematical or technical notation, not use in non-technical text. [1]

List

Greek

Many Greek letters are used as technical symbols. All of the Greek letters are encoded in the Greek section of Unicode but many are encoded a second time under the name of the technical symbol they represent. The "micro sign" (U+00B5, µ) is obviously inherited from ISO 8859-1, but the origin of the others is less clear.

Other Greek glyph variants encoded as separate characters include the lunate sigma Ϲ ϲ contrasting with Σ σ, final sigma ς (strictly speaking a contextual glyph variant) contrasting with σ, The Qoppa numeral symbol Ϟ ϟ contrasting with archaic Ϙ ϙ.

Greek letters assigned separate "symbol" codepoints include the Letterlike Symbols ϐ, ϵ, ϑ, ϖ, ϱ, ϒ, and ϕ (contrasting with β, ε, θ, π, ρ, Υ, φ); the Ohm symbol Ω (contrasting with Ω); and the mathematical operators for the product and sum (contrasting with Π and Σ).

Roman numerals

Unicode has a number of characters specifically designated as Roman numerals, as part of the Number Forms range from U+2160 to U+2183. For example, Roman 1988 (MCMLXXXVIII) could alternatively be written as ⅯⅭⅯⅬⅩⅩⅩⅧ. This range includes both upper- and lowercase numerals, as well as pre-combined glyphs for numbers up to 12 ( for XII), mainly intended for clock faces.

The pre-combined glyphs should only be used to represent the individual numbers where the use of individual glyphs is not wanted, and not to replace compounded numbers. For example, one can combine with to mean Roman numeral eleven (ⅩⅠ), so U+216A () is canonically equivalent to ⅩⅠ. Such characters are also referred to as composite compatibility characters or decomposable compatibility characters. Such characters would not normally have been included within the Unicode standard except for compatibility with other existing encodings (see Unicode compatibility characters). The goal was to accommodate simple translation from existing encodings into Unicode. This makes translations in the opposite direction complicated because multiple Unicode characters may map to a single character in another encoding. Without the compatibility concerns the only characters necessary would be: Ⅰ, Ⅴ, Ⅹ, Ⅼ, Ⅽ, Ⅾ, Ⅿ, ⅰ, ⅴ, ⅹ, ⅼ, ⅽ, ⅾ, ⅿ, ↀ, ↁ, ↂ, ↇ, ↈ, and Ↄ; all other Roman numerals can be composed from these.

See also

Related Research Articles

A, or a, is the first letter and the first vowel letter of the Latin alphabet, used in the modern English alphabet, and others worldwide. Its name in English is a, plural aes.

<span class="mw-page-title-main">D</span> 4th letter of the Latin alphabet

D, or d, is the fourth letter of the Latin alphabet, used in the modern English alphabet, the alphabets of other western European languages and others worldwide. Its name in English is dee, plural dees.

<span class="mw-page-title-main">Grapheme</span> Smallest functional written unit

In linguistics, a grapheme is the smallest functional unit of a writing system. The word grapheme is derived from Ancient Greek γράφω (gráphō) 'write' and the suffix -eme by analogy with phoneme and other names of emic units. The study of graphemes is called graphemics. The concept of graphemes is abstract and similar to the notion in computing of a character. By comparison, a specific shape that represents any particular grapheme in a given typeface is called a glyph.

<span class="mw-page-title-main">Unicode</span> Character encoding standard

Unicode, formally The Unicode Standard, is a text encoding standard maintained by the Unicode Consortium designed to support the use of text written in all of the world's major writing systems. Version 15.1 of the standard defines 149813 characters and 161 scripts used in various ordinary, literary, academic, and technical contexts.

GB/T 2312-1980 is a key official character set of the People's Republic of China, used for Simplified Chinese characters. GB2312 is the registered internet name for EUC-CN, which is its usual encoded form. GB refers to the Guobiao standards (国家标准), whereas the T suffix denotes a non-mandatory standard.

The Greek alphabet has been used to write the Greek language since the late 9th or early 8th century BC. It is derived from the earlier Phoenician alphabet, and was the earliest known alphabetic script to have distinct letters for vowels as well as consonants. In Archaic and early Classical times, the Greek alphabet existed in many local variants, but, by the end of the 4th century BC, the Euclidean alphabet, with 24 letters, ordered from alpha to omega, had become standard and it is this version that is still used for Greek writing today.

<span class="mw-page-title-main">Allograph</span> Distinct shapes of a written symbol

In graphemics and typography, the term allograph is used of a glyph that is a design variant of a letter or other grapheme, such as a letter, a number, an ideograph, a punctuation mark or other typographic symbol. In graphemics, an obvious example in English is the distinction between uppercase and lowercase letters. Allographs can vary greatly, without affecting the underlying identity of the grapheme. Even if the word "cat" is rendered as "cAt", it remains recognizable as the sequence of the three graphemes ⟨c⟩, ⟨a⟩, ⟨t⟩.

<span class="mw-page-title-main">Bitstream Cyberbit</span> Unicode font

Bitstream Cyberbit is a commercial serif Unicode font designed by Bitstream Inc. It is freeware for non-commercial uses. It was one of the first widely available fonts to support a large portion of the Unicode repertoire.

<span class="mw-page-title-main">Homoglyph</span> Different glyphs which are visually similar

In orthography and typography, a homoglyph is one of two or more graphemes, characters, or glyphs with shapes that appear identical or very similar but may have differing meaning. The designation is also applied to sequences of characters sharing these properties.

The internationalized domain name (IDN) homograph attack is a way a malicious party may deceive computer users about what remote system they are communicating with, by exploiting the fact that many different characters look alike. For example, the Cyrillic, Greek and Latin alphabets each have a letter ⟨o⟩ that has the same shape but different meaning from its counterparts.

In a writing system, a letter is a grapheme that generally corresponds to a phoneme—the smallest functional unit of speech—though there is rarely total one-to-one correspondence between the two. An alphabet is a writing system that uses letters.

Symbol is one of the four standard fonts available on all PostScript-based printers, starting with Apple's original LaserWriter (1985). It contains a complete unaccented Greek alphabet and a selection of commonly used mathematical symbols. Insofar as it fits into any standard classification, it is a serif font designed in the style of Times New Roman.

Unicode supports several phonetic scripts and notations through its existing scripts and the addition of extra blocks with phonetic characters. These phonetic characters are derived from an existing script, usually Latin, Greek or Cyrillic. Apart from the International Phonetic Alphabet (IPA), extensions to the IPA and obsolete and nonstandard IPA symbols, these blocks also contain characters from the Uralic Phonetic Alphabet and the Americanist Phonetic Alphabet.

Unicode equivalence is the specification by the Unicode character encoding standard that some sequences of code points represent essentially the same character. This feature was introduced in the standard to allow compatibility with preexisting standard character sets, which often included similar or identical characters.

In Unicode and the UCS, a compatibility character is a character that is encoded solely to maintain round-trip convertibility with other, often older, standards. As the Unicode Glossary says:

A character that would not have been encoded except for compatibility and round-trip convertibility with other standards

A numeral is a character that denotes a number. The decimal number digits 0–9 are used widely in various writing systems throughout the world, however the graphemes representing the decimal digits differ widely. Therefore Unicode includes 22 different sets of graphemes for the decimal digits, and also various decimal points, thousands separators, negative signs, etc. Unicode also includes several non-decimal numerals such as Aegean numerals, Roman numerals, counting rod numerals, Mayan numerals, Cuneiform numerals and ancient Greek numerals. There is also a large number of typographical variations of the Western Arabic numerals provided for specialized mathematical use and for compatibility with earlier character sets, such as ² or ②, and composite characters such as ½.

Many scripts in Unicode, such as Arabic, have special orthographic rules that require certain combinations of letterforms to be combined into special ligature forms. In English, the common ampersand (&) developed from a ligature in which the handwritten Latin letters e and t were combined. The rules governing ligature formation in Arabic can be quite complex, requiring special script-shaping technologies such as the Arabic Calligraphic Engine by Thomas Milo's DecoType.

KPS 9566 is a North Korean standard specifying a character encoding for the Chosŏn'gŭl (Hangul) writing system used for the Korean language. The edition of 1997 specified an ISO 2022-compliant 94×94 two-byte coded character set. Subsequent editions have added additional encoded characters outside of the 94×94 plane, in a manner comparable to UHC or GBK.

The ISO basic Latin alphabet is an international standard for a Latin-script alphabet that consists of two sets of 26 letters, codified in various national and international standards and used widely in international communication. They are the same letters that comprise the current English alphabet. Since medieval times, they are also the same letters of the modern Latin alphabet. The order is also important for sorting words into alphabetical order.

B, or b, is the second letter of the Latin alphabet, used in the modern English alphabet, the alphabets of other western European languages and others worldwide. Its name in English is bee, plural bees.

References

  1. "UTR #25: Unicode and Mathematics". unicode.org. Retrieved 2024-03-04.