Deltorphin

Last updated
Deltorphin
Deltorphin.svg
Names
IUPAC names
(3S)-3-[(2S)-2-[(2S)-2-[(2S)-2-[(2S)-2-[(2R)-2-[(2S)-2-amino-3-(4-hydroxyphenyl)propanamido]-4-(methylsulfanyl)butanamido]-3-phenylpropanamido]-3-(1H-imidazol-4-yl)propanamido]-4-methylpentanamido]-4-(methylsulfanyl)butanamido]-3-carbamoylpropanoic acid
or
L-tyrosyl-D-methionyl-L-phenylalanyl-L-histidyl-L-leucyl-L-methionyl-L-α-asparagine
Other names
Deltorphin A; Dermenkephalin
Identifiers
3D model (JSmol)
ChemSpider
PubChem CID
  • InChI=1S/C44H62N10O10S2/c1-25(2)18-34(42(62)50-32(15-17-66-4)40(60)51-33(38(46)58)22-37(56)57)52-44(64)36(21-28-23-47-24-48-28)54-43(63)35(20-26-8-6-5-7-9-26)53-41(61)31(14-16-65-3)49-39(59)30(45)19-27-10-12-29(55)13-11-27/h5-13,23-25,30-36,55H,14-22,45H2,1-4H3,(H2,46,58)(H,47,48)(H,49,59)(H,50,62)(H,51,60)(H,52,64)(H,53,61)(H,54,63)(H,56,57)/t30-,31+,32-,33-,34-,35-,36-/m0/s1
    Key: BHSURCCZOBVHJJ-NWOHMYAQSA-N
  • InChI=1/C44H62N10O10S2/c1-25(2)18-34(42(62)50-32(15-17-66-4)40(60)51-33(38(46)58)22-37(56)57)52-44(64)36(21-28-23-47-24-48-28)54-43(63)35(20-26-8-6-5-7-9-26)53-41(61)31(14-16-65-3)49-39(59)30(45)19-27-10-12-29(55)13-11-27/h5-13,23-25,30-36,55H,14-22,45H2,1-4H3,(H2,46,58)(H,47,48)(H,49,59)(H,50,62)(H,51,60)(H,52,64)(H,53,61)(H,54,63)(H,56,57)/t30-,31+,32-,33-,34-,35-,36-/m0/s1
    Key: BHSURCCZOBVHJJ-NWOHMYAQBV
  • O=C(O)C[C@@H](C(=O)N)NC(=O)[C@@H](NC(=O)[C@@H](NC(=O)[C@@H](NC(=O)[C@@H](NC(=O)[C@H](NC(=O)[C@@H](N)Cc1ccc(O)cc1)CCSC)Cc2ccccc2)Cc3c[nH]cn3)CC(C)C)CCSC
Properties
C44H62N10O10S2
Molar mass 955.154 g/mol
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).

Deltorphin, also known as deltorphin A and dermenkephalin, is a naturally occurring, exogenous opioid heptapeptide and thus, exorphin, with the amino acid sequence Tyr-D-Met-Phe-His-Leu-Met-Asp-NH2. [1] [2] [3] Along with the other deltorphins (such as deltorphin I and deltorphin II) and the dermorphins, deltorphin is endogenous to frogs of the genus Phyllomedusa such as P. bicolor and P. sauvagei where it is produced in their skin, and is not known to occur naturally in any other species. [1] [2] [4] Deltorphin is one of the highest affinity and most selective naturally occurring opioid peptides known, acting as a very potent and highly specific agonist of the δ-opioid receptor. [1] [2] [3]

Deltorphins have an unusually high blood–brain barrier penetration rate. The nonselective opiate antagonist naloxone inhibits deltorphin uptake by brain microvessels, but neither the selective δ-opioid antagonist naltrindole nor a number of opioid peptides with different affinities for δ- or μ-opioid receptors compete with deltorphins for the transport. [5]

See also

Related Research Articles

Dynorphins (Dyn) are a class of opioid peptides that arise from the precursor protein prodynorphin. When prodynorphin is cleaved during processing by proprotein convertase 2 (PC2), multiple active peptides are released: dynorphin A, dynorphin B, and α/β-neo-endorphin. Depolarization of a neuron containing prodynorphin stimulates PC2 processing, which occurs within synaptic vesicles in the presynaptic terminal. Occasionally, prodynorphin is not fully processed, leading to the release of “big dynorphin.” “Big Dynorphin” is a 32-amino acid molecule consisting of both dynorphin A and dynorphin B.

<span class="mw-page-title-main">Opioid receptor</span> Group of biological receptors

Opioid receptors are a group of inhibitory G protein-coupled receptors with opioids as ligands. The endogenous opioids are dynorphins, enkephalins, endorphins, endomorphins and nociceptin. The opioid receptors are ~40% identical to somatostatin receptors (SSTRs). Opioid receptors are distributed widely in the brain, in the spinal cord, on peripheral neurons, and digestive tract.

<span class="mw-page-title-main">Dermorphin</span> Chemical compound

Dermorphin is a hepta-peptide first isolated from the skin of South American frogs belonging to the genus Phyllomedusa. The peptide is a natural opioid that binds as an agonist with high potency and selectivity to mu opioid receptors. Dermorphin is about 30–40 times more potent than morphine, but theoretically may be less likely to produce drug tolerance and addiction due to its high potency. The amino acid sequence of dermorphin is H-Tyr-D-Ala-Phe-Gly-Tyr-Pro-Ser-NH2.

<span class="mw-page-title-main">Opioid peptide</span> Class of peptides that bind to opioid receptors

Opioid peptides or opiate peptides are peptides that bind to opioid receptors in the brain; opiates and opioids mimic the effect of these peptides. Such peptides may be produced by the body itself, for example endorphins. The effects of these peptides vary, but they all resemble those of opiates. Brain opioid peptide systems are known to play an important role in motivation, emotion, attachment behaviour, the response to stress and pain, control of food intake, and the rewarding effects of alcohol and nicotine.

<i>Phyllomedusa bicolor</i> Species of amphibian

Phyllomedusa bicolor, the giant leaf frog, bicolor tree-frog, giant monkey frog, or waxy-monkey treefrog, is a species of leaf frog. It can be found in the Amazon basin of Brazil, Colombia, Bolivia, and Peru, and can also be found in the Guianan Region of Venezuela and the Guianas, and in Cerrado of the state of Maranhão in Brazil.

<span class="mw-page-title-main">Met-enkephalin</span> Chemical compound

Met-enkephalin, also known as metenkefalin (INN), sometimes referred to as opioid growth factor (OGF), is a naturally occurring, endogenous opioid peptide that has opioid effects of a relatively short duration. It is one of the two forms of enkephalin, the other being leu-enkephalin. The enkephalins are considered to be the primary endogenous ligands of the δ-opioid receptor, due to their high potency and selectivity for the site over the other endogenous opioids.

<span class="mw-page-title-main">Nociceptin receptor</span> Protein-coding gene in the species Homo sapiens

The nociceptin opioid peptide receptor (NOP), also known as the nociceptin/orphanin FQ (N/OFQ) receptor or kappa-type 3 opioid receptor, is a protein that in humans is encoded by the OPRL1 gene. The nociceptin receptor is a member of the opioid subfamily of G protein-coupled receptors whose natural ligand is the 17 amino acid neuropeptide known as nociceptin (N/OFQ). This receptor is involved in the regulation of numerous brain activities, particularly instinctive and emotional behaviors. Antagonists targeting NOP are under investigation for their role as treatments for depression and Parkinson's disease, whereas NOP agonists have been shown to act as powerful, non-addictive painkillers in non-human primates.

δ-opioid receptor Opioid receptor named for the mouse vas deferens, where it was first characterized

The ∆-opioid receptor, also known as delta opioid receptor or simply delta receptor, abbreviated DOR or DOP, is an inhibitory 7-transmembrane G-protein coupled receptor coupled to the G protein Gi/G0 and has enkephalins as its endogenous ligands. The regions of the brain where the ∆-opioid receptor is largely expressed vary from species model to species model. In humans, the ∆-opioid receptor is most heavily expressed in the basal ganglia and neocortical regions of the brain.

Dermaseptins are a family of peptides isolated from skin of the frog genus Phyllomedusa. The sequence of the dermaseptins varies greatly but due to the presence of lysine residues all are cationic and most have the potential to form amphipathic helices in water or when integrated with the lipid bilayer of the bacterial membrane. Clear separation of two lobes of positive and negative intramolecular electrostatic potential is thought to be important in cytotoxic activity. Dermaseptins are typically 27-34 amino acid residues in length and were the first vertebrate peptides demonstrated as having a lethal effect on the filamentous fungi implicated in severe opportunistic infections accompanying immunodeficiency syndrome and immunosuppressive drug therapy.

<span class="mw-page-title-main">Naltrindole</span> Chemical compound

Naltrindole is a highly potent, highly selective delta opioid receptor antagonist used in biomedical research. In May 2012 a paper was published in Nature with the structure of naltrindole in complex with the mouse δ-opioid G-protein coupled receptor, solved by X-ray crystallography.

<span class="mw-page-title-main">SNC-80</span> Chemical compound

SNC-80 is an opioid analgesic compound that selectively activates μ–δ opioid receptor heteromers and is used in scientific research. It was discovered in 1994.

<span class="mw-page-title-main">Tachykinin receptor 3</span> Protein-coding gene in the species Homo sapiens

Tachykinin receptor 3, also known as TACR3, is a protein which in humans is encoded by the TACR3 gene.

<span class="mw-page-title-main">Alazocine</span> Synthetic opioid analgesic

Alazocine, also known more commonly as N-allylnormetazocine (NANM), is a synthetic opioid analgesic of the benzomorphan family related to metazocine, which was never marketed. In addition to its opioid activity, the drug is a sigma receptor agonist, and has been used widely in scientific research in studies of this receptor. Alazocine is described as a potent analgesic, psychotomimetic or hallucinogen, and opioid antagonist. Moreover, one of its enantiomers was the first compound that was found to selectively label the σ1 receptor, and led to the discovery and characterization of the receptor.

<span class="mw-page-title-main">U-69,593</span> Chemical compound

U-69,593 is a drug which acts as a potent and selective κ1-opioid receptor agonist. In animal studies it has been shown to produce antinociception, anti-inflammation, anxiolysis, respiratory depression, and diuresis, while having little effect on gastrointestinal motility. It also inhibits the peripheral, though not central secretion of oxytocin and vasopressin in rats.

<span class="mw-page-title-main">Hemorphin-4</span> Chemical compound

Hemorphin-4 is an endogenous opioid peptide of the hemorphin family which possesses antinociceptive properties and is derived from the β-chain of hemoglobin in the bloodstream. It is a tetrapeptide with the amino acid sequence Tyr-Pro-Trp-Thr. Hemorphin-4 has affinities for the μ-, δ-, and κ-opioid receptors that are in the same range as the structurally related β-casomorphins, although affinity to the κ-opioid receptor is markedly higher in comparison. It acts as an agonist at these sites. Hemorphin-4 also has inhibitory effects on angiotensin-converting enzyme (ACE), and as a result, may play a role in the regulation of blood pressure. Notably, inhibition of ACE also reduces enkephalin catabolism.

Hemorphins are a class of naturally occurring, endogenous opioid peptides which are found in the bloodstream, and are derived from the β-chain of hemoglobin. They have antinociceptive effects via activation of the opioid receptors, and some may also play a role in blood pressure through inhibition of the angiotensin-converting enzyme (ACE), as well as cause an elevation of endogenous enkephalin levels. Some examples of hemorphins include hemorphin-4, spinorphin, and valorphin.

<span class="mw-page-title-main">Biphalin</span> Chemical compound

Biphalin is a dimeric enkephalin endogenous peptide (Tyr-D-Ala-Gly-Phe-NH)2 composed of two tetrapeptides derived from enkephalins, connected 'tail-to-tail' by a hydrazide bridge. The presence of two distinct pharmacophores confers on biphalin a high affinity for both μ and δ opioid receptors (with an EC50 of about 1-5 nM for both μ and δ receptors), therefore it has analgesic activity. Biphalin presents a considerable antinociceptive profile. In fact, when administered intracerebroventricularly in mice, biphalin displays a potency almost 7-fold greater than that of the ultra-potent alkaloid agonist, etorphine and 7000-fold greater than morphine; biphalin and morphine were found to be equipotent after intraperitoneal administration. The extraordinary in vivo potency shown by this compound is coupled with low side-effects, in particular, to produce no dependency in chronic use. For these reasons, several efforts have been carried out in order to obtain more information about structure-activity relationship (SAR). Results clearly indicate that, at least for μ receptor binding, the presence of two pharmacophores is not necessary; Tyr1 is indispensable for analgesic activity, while replacing Phe at the position 4 and 4' with non-aromatic, but lipophilic amino acids does not greatly change the binding properties and in general 4,4' positions are found to be important to design biphalin analogues with increased potency and modified μ/δ selectivity. The hydrazide linker is not fundamental for activity or binding, and it can be conveniently substituted by different conformationally constrained cycloaliphatic diamine linkers.

Leumorphin, also known as dynorphin B1–29, is a naturally occurring endogenous opioid peptide. Derived as a proteolytic cleavage product of residues 226-254 of prodynorphin, leumorphin is a nonacosapeptide and has the sequence Tyr-Gly-Gly-Phe-Leu-Arg-Arg-Gln-Phe-Lys-Val-Val-Thr-Arg-Ser-Gln-Glu-Asp-Pro-Asn-Ala-Tyr-Ser-Gly-Glu-Leu-Phe-Asp-Ala. It can be further reduced to dynorphin B and dynorphin B-14 by pitrilysin metallopeptidase 1, an enzyme of the endopeptidase family. Leumorphin behaves as a potent and selective κ-opioid receptor agonist, similarly to other endogenous opioid peptide derivatives of prodynorphin.

Deltorphin I, also known as [D-Ala2]deltorphin I or deltorphin C, is a naturally occurring, exogenous opioid heptapeptide and hence, exorphin, with the amino acid sequence Tyr-D-Ala-Phe-Asp-Val-Val-Gly-NH2. While not known to be endogenous to humans or other mammals, deltorphin I, along with the other deltorphins and the dermorphins, is produced naturally in the skin of species of Phyllomedusa, a genus of frogs native to South and Central America. Deltorphin possesses very high affinity and selectivity as an agonist for the δ-opioid receptor, and on account of its unusually high blood-brain-barrier penetration rate, produces centrally-mediated analgesic effects in animals even when administered peripherally.

<span class="mw-page-title-main">Metkefamide</span> Chemical compound

Metkefamide (INN; LY-127,623), or metkephamid acetate (USAN), but most frequently referred to simply as metkephamid, is a synthetic opioid pentapeptide and derivative of [Met]enkephalin with the amino acid sequence Tyr-D-Ala-Gly-Phe-(N-Me)-Met-NH2. It behaves as a potent agonist of the δ- and μ-opioid receptors with roughly equipotent affinity, and also has similarly high affinity as well as subtype-selectivity for the κ3-opioid receptor.

References

  1. 1 2 3 Kreil G, Barra D, Simmaco M, et al. (March 1989). "Deltorphin, a novel amphibian skin peptide with high selectivity and affinity for delta opioid receptors". European Journal of Pharmacology. 162 (1): 123–8. doi:10.1016/0014-2999(89)90611-0. PMID   2542051.
  2. 1 2 3 Mor A, Delfour A, Sagan S, et al. (September 1989). "Isolation of dermenkephalin from amphibian skin, a high-affinity delta-selective opioid heptapeptide containing a D-amino acid residue". FEBS Letters. 255 (2): 269–74. doi: 10.1016/0014-5793(89)81104-4 . PMID   2551734. S2CID   6095995.
  3. 1 2 Erspamer V, Melchiorri P, Falconieri-Erspamer G, et al. (July 1989). "Deltorphins: a family of naturally occurring peptides with high affinity and selectivity for delta opioid binding sites". Proceedings of the National Academy of Sciences of the United States of America. 86 (13): 5188–92. Bibcode:1989PNAS...86.5188E. doi: 10.1073/pnas.86.13.5188 . PMC   297583 . PMID   2544892.
  4. Temussi PA, Picone D, Tancredi T, et al. (April 1989). "Conformational properties of deltorphin: new features of the delta-opioid receptor". FEBS Letters. 247 (2): 283–8. doi: 10.1016/0014-5793(89)81353-5 . PMID   2541018. S2CID   84259225.
  5. Fiori, Anna; Cardelli, Patrizia; Negri, Lucia; Savi, Maria Rosaria; Strom, Roberto; Erspamer, Vittorio (1997-08-19). "Deltorphin transport across the blood–brain barrier". Proceedings of the National Academy of Sciences of the United States of America. 94 (17): 9469–9474. Bibcode:1997PNAS...94.9469F. doi: 10.1073/pnas.94.17.9469 . ISSN   0027-8424. PMC   23226 . PMID   9256506.