1-Hexadecene

Last updated
1-Hexadecene
1-Hexadecene Structural Formula V1.svg
Names
Preferred IUPAC name
Hexadec-1-ene
Other names
1-Hexadecene; Cetene; 1-Cetene; Hexadecylene-1
Identifiers
3D model (JSmol)
ChEBI
ChEMBL
ChemSpider
ECHA InfoCard 100.010.097 OOjs UI icon edit-ltr-progressive.svg
EC Number
  • 211-105-8
PubChem CID
UNII
  • CCCCCCCCCCCCCCC=C
Properties
C16H32
Molar mass 224.432 g·mol−1
AppearanceColorless liquid
Density 0.781 g/cm3
Melting point 4 °C (39 °F; 277 K)
Boiling point 285 °C (545 °F; 558 K)
Hazards
Flash point 132 °C (270 °F; 405 K) [1] [2]
240 °C (464 °F; 513 K) [1] [2]
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).

1-Hexadecene, also known as 1-cetene, is a long-chain hydrocarbon and an alkene with the molecular formula CH2=CH(CH2)13CH3. It is one of many isomers of hexadecene. Classified as an alpha-olefin, 1-hexadecene is a colorless liquid. [3] [4] [5]

1-Hexadecene is used as a surfactant in lubricating fluid, a drilling fluid in the boring and drilling industry, and in paper sizing. [2]

However, the high reactivity of 1-hexadecene means that exposure to air could cause oxidation of its surface layer, forming unwanted impurities. It is stored with the use of tank blanketing, and handled in a dry, inert atmosphere. [4]

Related Research Articles

<span class="mw-page-title-main">Alkene</span> Hydrocarbon compound containing one or more C=C bonds

In organic chemistry, an alkene, or olefin, is a hydrocarbon containing a carbon–carbon double bond. The double bond may be internal or in the terminal position. Terminal alkenes are also known as α-olefins.

<span class="mw-page-title-main">Ethylene</span> Hydrocarbon compound (H₂C=CH₂)

Ethylene is a hydrocarbon which has the formula C2H4 or H2C=CH2. It is a colourless, flammable gas with a faint "sweet and musky" odour when pure. It is the simplest alkene.

<span class="mw-page-title-main">Hydrocarbon</span> Organic compound consisting entirely of hydrogen and carbon

In organic chemistry, a hydrocarbon is an organic compound consisting entirely of hydrogen and carbon. Hydrocarbons are examples of group 14 hydrides. Hydrocarbons are generally colourless and hydrophobic; their odor is usually faint, and may be similar to that of gasoline or lighter fluid. They occur in a diverse range of molecular structures and phases: they can be gases, liquids, low melting solids or polymers.

<span class="mw-page-title-main">Vinyl group</span> Chemical group (–CH=CH₂)

In organic chemistry, a vinyl group is a functional group with the formula −CH=CH2. It is the ethylene molecule with one fewer hydrogen atom. The name is also used for any compound containing that group, namely R−CH=CH2 where R is any other group of atoms.

<span class="mw-page-title-main">Triglyceride</span> Any ester of glycerol having all three hydroxyl groups esterified with fatty acids

A triglyceride is an ester derived from glycerol and three fatty acids. Triglycerides are the main constituents of body fat in humans and other vertebrates as well as vegetable fat. They are also present in the blood to enable the bidirectional transference of adipose fat and blood glucose from the liver and are a major component of human skin oils.

<span class="mw-page-title-main">Synthetic oil</span> Lubricant consisting of artificially made chemical compounds

Synthetic oil is a lubricant consisting of chemical compounds that are artificially modified or synthesised. Synthetic lubricants can be manufactured using chemically modified petroleum components rather than whole crude oil, but can also be synthesized from other raw materials. The base material, however, is still overwhelmingly crude oil that is distilled and then modified physically and chemically. The actual synthesis process and composition of additives is generally a commercial trade secret and will vary among producers.

Propylene, also known as propene, is an unsaturated organic compound with the chemical formula CH3CH=CH2. It has one double bond, and is the second simplest member of the alkene class of hydrocarbons. It is a colorless gas with a faint petroleum-like odor.

The Fischer–Tropsch process (FT) is a collection of chemical reactions that converts a mixture of carbon monoxide and hydrogen, known as syngas, into liquid hydrocarbons. These reactions occur in the presence of metal catalysts, typically at temperatures of 150–300 °C (302–572 °F) and pressures of one to several tens of atmospheres. The Fischer–Tropsch process is an important reaction in both coal liquefaction and gas to liquids technology for producing liquid hydrocarbons.

<span class="mw-page-title-main">Isobutylene</span> Unsaturated hydrocarbon compound (H2C=C(CH3)2)

Isobutylene is a hydrocarbon with the chemical formula (CH3)2C=CH2. It is a four-carbon branched alkene (olefin), one of the four isomers of butylene. It is a colorless flammable gas, and is of considerable industrial value.

<span class="mw-page-title-main">Pentene</span> Chemical compound

Pentenes are alkenes with the chemical formula C
5
H
10
. Each molecule contains one double bond within its molecular structure. Six different compounds are in this class, differing from each other by whether the carbon atoms are attached linearly or in a branched structure and whether the double bond has a cis or trans form.

<span class="mw-page-title-main">Terminal alkene</span> Hydrocarbon compounds with a C=C bond at the alpha carbon

In organic chemistry, terminal alkenes are a family of organic compounds which are alkenes with a chemical formula CxH2x, distinguished by having a double bond at the primary, alpha (α), or 1- position. This location of a double bond enhances the reactivity of the compound and makes it useful for a number of applications.

<span class="mw-page-title-main">Straight-chain terminal alkene</span>

Straight-chain terminal alkenes, also called linear alpha olefins (LAO) or normal alpha olefins (NAO), are alkenes (olefins) having a chemical formula CnH2n, distinguished from other alkenes with a similar molecular formula by being terminal alkenes, in which the double bond occurs at the alpha position, and by having a linear (unbranched) hydrocarbon chain.

<span class="mw-page-title-main">1-Butene</span> Chemical compound

1-Butene (IUPAC name: But-1-ene, also known as 1-butylene) is the organic compound with the formula CH3CH2CH=CH2. It is a colorless gas. But-1-ene is an alkene easily condensed to give a colorless liquid. It is classified as a linear alpha-olefin (terminal alkene). It is one of the isomers of butene (butylene). It is a precursor to diverse products.

<span class="mw-page-title-main">1-Octadecene</span> Chemical compound

1-Octadecene is a long-chain hydrocarbon and an alkene with the molecular formula CH2=CH(CH2)15CH3. It is one of many isomers of octadecene. Classified as an alpha-olefin, 1-octadecene is the longest alkene that is liquid at room temperature.

<span class="mw-page-title-main">Organoaluminium chemistry</span>

Organoaluminium chemistry is the study of compounds containing bonds between carbon and aluminium. It is one of the major themes within organometallic chemistry. Illustrative organoaluminium compounds are the dimer trimethylaluminium, the monomer triisobutylaluminium, and the titanium-aluminium compound called Tebbe's reagent. The behavior of organoaluminium compounds can be understood in terms of the polarity of the C−Al bond and the high Lewis acidity of the three-coordinated species. Industrially, these compounds are mainly used for the production of polyolefins.

Decene is an organic compound with the chemical formula C10H20. Decene contains a chain of ten carbon atoms with one double bond, making it an alkene. There are many isomers of decene depending on the position and geometry of the double bond. Dec-1-ene is the only isomer of industrial importance. As an alpha olefin, it is used as a comonomer in copolymers and is an intermediate in the production of epoxides, amines, oxo alcohols, synthetic lubricants, synthetic fatty acids and alkylated aromatics.

In organic chemistry, ethenolysis is a chemical process in which internal olefins are degraded using ethylene as the reagent. The reaction is an example of cross metathesis. The utility of the reaction is driven by the low cost of ethylene as a reagent and its selectivity. It produces compounds with terminal alkene functional groups (α-olefins), which are more amenable to other reactions such as polymerization and hydroformylation.

1-Dodecene is an alkene with the formula C10H21CH=CH2, consisting of a chain of twelve carbon atoms ending with a double bond. While there are many isomers of dodecene depending on which carbon the double bond is placed, this isomer is of greater commercial importance. It is classified as an alpha-olefin. Alpha-olefins are distinguished by having a double bond at the primary or alpha (α) position. This location of a double bond enhances the reactivity of the compound and makes it useful for a number of applications, especially for the production of detergents.

The Riley oxidation is a selenium dioxide-mediated oxidation of methylene groups adjacent to carbonyls. It was first reported by Harry Lister Riley and co-workers in 1932. In the decade that ensued, selenium-mediated oxidation rapidly expanded in use, and in 1939, Andre Guillemonat and co-workers disclosed the selenium dioxide-mediated oxidation of olefins at the allylic position. Today, selenium-dioxide-mediated oxidation of methylene groups to alpha ketones and at the allylic position of olefins is known as the Riley Oxidation.

<span class="mw-page-title-main">Neohexene</span> Hydrocarbon compound ((CH3)3CCH=CH2)

Neohexene is the hydrocarbon compound with the chemical formula (CH3)3CCH=CH2. It is a colorless liquid, with properties similar to other hexenes. It is a precursor to commercial synthetic musk perfumes.

References

  1. 1 2 "1-Hexadecene for synthesis. CAS 629-73-2, chemical formula CH
    3
    (CH
    2
    )
    13
    CH
    =CH
    2
    "
    . merckmillipore.com. Retrieved 2021-02-14.
  2. 1 2 3 "AlphaPlus 1-Hexadecene Safety Data Sheet" (PDF). Archived from the original (PDF) on 2019-09-24.
  3. Griesbaum, Karl; Behr, Arno; Biedenkapp, Dieter; Voges, Heinz-Werner; Garbe, Dorothea; Paetz, Christian; Collin, Gerd; Mayer, Dieter; Höke, Hartmut (2000). "Hydrocarbons". Ullmann's Encyclopedia of Industrial Chemistry . Weinheim: Wiley-VCH. doi:10.1002/14356007.a13_227. ISBN   3527306730.
  4. 1 2 "1-Hexacedene (Alpha Olefin C16)". Archived from the original on 2017-08-25. Retrieved 2017-07-07.
  5. "1-HEXADECENE (ALPHA-OLEFIN C16)". chemicalland21.com. Retrieved 2021-02-14.