1L-chiro-Inositol

Last updated
1L-chiro-Inositol
L-chiro-inositol.svg
Names
IUPAC name
1L-chiro-Inositol
Systematic IUPAC name
(1R,2R,3R,4R,5S,6S)-Cyclohexane-1,2,3,4,5,6-hexol
Other names
(-)-1,2,4/3,5,6-inositol
L-(−)-chiro-Inositol
Identifiers
3D model (JSmol)
ChEBI
ChemSpider
ECHA InfoCard 100.008.183 OOjs UI icon edit-ltr-progressive.svg
UNII
  • InChI=1S/C6H12O6/c7-1-2(8)4(10)6(12)5(11)3(1)9/h1-12H/t1-,2-,3-,4-,5+,6+/m1/s1 Yes check.svgY
    Key: CDAISMWEOUEBRE-SHFUYGGZSA-N Yes check.svgY
  • O[C@@H]1[C@H](O)[C@@H](O)[C@@H](O)[C@H](O)[C@H]1O
Properties
C6H12O6
Molar mass 180.156 g·mol−1
Melting point 230 °C (decomposes) [1]
485 g/L [1]
20/ −60°, c=1.3 in H2O [1]
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
Yes check.svgY  verify  (what is  Yes check.svgYX mark.svgN ?)

The chemical compound 1L-chiro-inositol [2] (often called L-chiro-inositol or LCI) is one of the nine stereoisomers of cyclohexane-1,2,3,4,5,6-hexol, with formula C6H12O6, the generic "inositol". Its molecule has a ring of six carbon atoms, each bonded to a hydrogen atom and a hydroxyl group (–OH). Imagining the ring is horizontal, the hydroxyls on carbons 1, 2, and 4, in clockwise order are above the respective hydrogens, while the other three are below them.

Contents

The compound occurs in the human body and other organisms, together with its enantiomer (mirror image isomer) 1D-chiro-inositol (DCI), but at a much lower concentration than the main isomer myo-inositol.

Structure

L-chiro-inositol crystallizes in the monoclinic system, group P21, with cell dimensions a = 686.7 pm, b = 913.3 pm, c = 621.7 pm (±0.004 pm) angle β = 106.59° (± 0.04°), molecular count Z = 2. The molecule has the expected chair conformation, with puckering parameters Q = 56.1 pm, θ = 4.4°, φ = 51.2°. The non-hydrogen molecular symmetry is close to C2. The C–C bond lengths range from 151.5 to 152.8 pm, and the C–O bond lengths from 141.8 to 143.6 pm. The C–C–C angles range from 109.7 to 113.1°, and the C–C–O angles from 106.5 to 112.0°. [3]

Laboratory synthesis

L-chiro-inositol can be prepared from myo-inositol. [4] It can be prepared also from para-benzoquinone by enzymatic action on a derived conduritol B intermediate; [5] or by controlled oxidation of cyclohexa-3,5-diene-1,2-diol. [6] [7]

Another viable method is decomposition of plant-sourced quebrachitol, which can be obtained in good quantity from natural rubber serum (NRS), the liquid remaining from coagulation of latex from Hevea brasiliensis . [8]

Natural occurrence

L-chiro-inositol occurs, together with the D- isomer, in phospholipids of animal tissues. Analysis of rat tissues shows predominance of DCI in fat, liver, brain and kidney, and approximately equal amounts of DCI and LCI in muscles. L-chiro-inositol is also found in plants and parasites as quebrachitol, an ester of LCI — specifically, 2-O-methyl-L-chiro-inositol. [9] [8]

L-chiro-inositol can be extracted from dead leaf material from the seagrass Syringodium filiforme that washes up as flotsam on Caribbean beaches. Yeld of 2.3–2.5% of dry weight has been reported. [10]

Microbial action in soil incubated for 12 days at 70% moisture converted about 4% of the at converted about 4% of infused myo-inositol to chiro-inositol of unspecified (D or L) optical activity. [11]

See also

Related Research Articles

<span class="mw-page-title-main">Inositol</span> Carbocyclic sugar

In biochemistry, medicine, and related sciences, inositol generally refers to myo-inositol, the most important stereoisomer of the chemical compound cyclohexane-1,2,3,4,5,6-hexol. Its formula is C6H12O6; the molecule has a ring of six carbon atoms, each with an hydrogen atom and a hydroxyl group (–OH). In myo-inositol, two of the hydroxyls, neither adjacent not opposite, lie above the respective hydrogens relative to the mean plane of the ring.

In organic chemistry, butyl is a four-carbon alkyl radical or substituent group with general chemical formula −C4H9, derived from either of the two isomers (n-butane and isobutane) of butane.

In stereochemistry, an epimer is one of a pair of diastereomers. The two epimers have opposite configuration at only one stereogenic center out of at least two. All other stereogenic centers in the molecules are the same in each. Epimerization is the interconversion of one epimer to the other epimer.

<span class="mw-page-title-main">Phosphatidylinositol</span> Signaling molecule

Phosphatidylinositol or inositol phospholipid is a biomolecule. It was initially called "inosite" when it was discovered by Léon Maquenne and Johann Joseph von Scherer in the late 19th century. It was discovered in bacteria but later also found in eukaryotes, and was found to be a signaling molecule.

<span class="mw-page-title-main">Inositol oxygenase</span> Protein-coding gene in the species Homo sapiens

Inositol oxygenase, also commonly referred to as myo-inositol oxygenase (MIOX), is a non-heme di-iron enzyme that oxidizes myo-inositol to glucuronic acid. The enzyme employs a unique four-electron transfer at its Fe(II)/Fe(III) coordination sites and the reaction proceeds through the direct binding of myo-inositol followed by attack of the iron center by diatomic oxygen. This enzyme is part of the only known pathway for the catabolism of inositol in humans and is expressed primarily in the kidneys. Recent medical research regarding MIOX has focused on understanding its role in metabolic and kidney diseases such as diabetes, obesity and acute kidney injury. Industrially-focused engineering efforts are centered on improving MIOX activity in order to produce glucaric acid in heterologous hosts.

1<small>D</small>-<i>chiro</i>-Inositol Chemical compound

1D-chiro-Inositol or D-chiro-inositol is a chemical substance with formula C6H12O6, one of the nine isomers of cyclohexane-1,2,3,4,5,6-hexol. The molecule has a ring of six carbon atoms, each bound to one hydrogen atom and one hydroxyl (OH) group. The hydroxyls on atoms 1, 2, and 4, in counterclockwise order, lie above the plane of the ring. The molecule being distinct from its mirror image, the compound is chiral, hence its name. Its enantiomer is 1L-chiro-inositol.

<i>scyllo</i>-Inositol Chemical compound

scyllo-Inositol, also called scyllitol, cocositol, or quercinitol, is a chemical compound with formula C6H12O6, one of the nine inositols, the stereoisomers of cyclohexane-1,2,3,4,5,6-hexol. The molecule has a ring of six carbon atoms, each bound to one hydrogen atom and one hydroxyl group (–OH); if the ring is assumed horizontal, the hydroxyls lie alternatively above and below the respective hydrogens.

<span class="mw-page-title-main">Inositol-phosphate phosphatase</span> Class of enzymes

The enzyme Inositol phosphate-phosphatase is of the phosphodiesterase family of enzymes. It is involved in the phosphophatidylinositol signaling pathway, which affects a wide array of cell functions, including but not limited to, cell growth, apoptosis, secretion, and information processing. Inhibition of inositol monophosphatase may be key in the action of lithium in treating bipolar disorder, specifically manic depression.

<span class="mw-page-title-main">Isomer</span> Chemical compounds with the same molecular formula but different atomic arrangements

In chemistry, isomers are molecules or polyatomic ions with identical molecular formula – that is, the same number of atoms of each element – but distinct arrangements of atoms in space. Isomerism refers to the existence or possibility of isomers.

<span class="mw-page-title-main">Tetrahydroxy-1,4-benzoquinone</span> Chemical compound

Tetrahydroxy-1,4-benzoquinone, also called tetrahydroxy-p-benzoquinone, tetrahydroxybenzoquinone, or tetrahydroxyquinone, is an organic compound with formula C6O2(OH)4. Its molecular structure consists of a cyclohexadiene ring with four hydroxyl groups and two ketone groups in opposite (para) positions.

<i>neo</i>-Inositol Chemical compound

The chemical compound neo-inositol is one of the nine stereoisomers cyclohexane-1,2,3,4,5,6-hexol, the "inositols". Its formula is C6H12O6; the six carbon atoms form a ring, each of them is bonded to a hydrogen atom and a hydroxyl group (–OH). If the ring is assumed horizontal, three consecutive hydroxyls lie above the respective hydrogens, and the other three lie below them.

<i>muco</i>-Inositol Chemical compound

muco-Inositol is a critically important chemical in the gustatory (taste) modality of the mammalian nervous system. The generic form is coupled to a phospholipid of the outer lemma of the sensory neurons associated with the sodium ion sensitive channel of gustation.

<i>epi</i>-Inositol Chemical compound

Epi-Inositol is one of the stereoisomers of inositol.

<i>cis</i>-Inositol Chemical compound

cis-Inositol is one of the isomers of inositol.

<i>allo</i>-Inositol Chemical compound

allo-Inositol is a stereoisomer of inositol.

<span class="mw-page-title-main">Cyclitol</span> Class of chemical compounds

In organic chemistry, a cyclitol is a cycloalkane containing at least three hydroxyl, each attached to a different ring carbon atom. The general formula for an unsubstituted cyclitol is C
n
H
2n-x
(OH)
x
or C
n
H
2n
O
x
where 3 ≤ xn.

<span class="mw-page-title-main">Ononitol</span> Chemical compound

The chemical compound ononitol is a derivative of inositol, specifically 4-O-methyl-myo-inositol: an ether that can be described as the result of replacing the hydroxyl (–OH) in position 4 of myo-inositol by a methoxy group.

<span class="mw-page-title-main">1,2,3,4,5-Cyclopentanepentol</span> Chemical compound

1,2,3,4,5-Cyclopentanepentol, also named cyclopentane-1,2,3,4,5-pentol or 1,2,3,4,5-pentahydroxycyclopentane is a chemical compound with formula C
5
H
10
O
5
or (–CHOH–)
5
, whose molecule consists of a ring of five carbon atoms, each connected to one hydrogen and one hydroxyl group. The unqualified term "cyclopentanepentol" usually refers to this compound. There are four distinct stereoisomers with this same structure.

<span class="mw-page-title-main">1,2,3,4-Cyclohexanetetrol</span> Chemical compound

1,2,3,4-Cyclohexanetetrol (also named cyclohexane-1,2,3,4-tetrol, 1,2,3,4-tetrahydroxycyclohexane, or ortho-cyclohexanetetrol) is an organic compound whose molecule can be described as a cyclohexane with four hydroxyl (OH) groups substituted for hydrogen atoms on four consecutive carbon atoms. Its formula can be written C
6
H
12
O
4
, C
6
H
8
(OH)
4
, or (–CH(OH)–)4(–CH
2
–)2.

<span class="mw-page-title-main">Cyclohexane-1,2,3,4,5,6-hexol</span> Family of sugars with a six-carbon ring

Cyclohexane-1,2,3,4,5,6-hexol is a family of chemical compounds with formula C6H12O6, whose molecule consists of a ring of six carbon atoms, each bound to one hydrogen atom and one hydroxyl group (–OH). There are nine stereoisomers, that differ by the position of the hydroxyl groups relative to the mean plane of the ring. All these compounds are sometimes called inositol, although this name most often refers to a particular isomer, myo-inositol, which has many important physiological roles and medical uses.

References

  1. 1 2 3 Sigma-Aldrich (2024), "Product 468053: L-(−)-chiro-Inositol". Online catalog, accessed on 2024-06-31.
  2. IUPAC Chemical Nomenclature and Structure Representation Division (2013). "P-104.2.1". In Favre, Henri A.; Powell, Warren H. (eds.). Nomenclature of Organic Chemistry: IUPAC Recommendations and Preferred Names 2013. IUPACRSC. ISBN   978-0-85404-182-4.
  3. George A. Jeffrey, Younghee Yeon (1987): "The crystal structure of l-chiro-inositol". Carbohydrate Research, volume 159, issue 2, pages 211-216. doi : 10.1016/S0008-6215(00)90216-7
  4. M. Belén Cid, Francisco Alfonso, Manuel Martín-Lomas (2003): "L-chiro-inositol derivatives from myo-inositol. Building blocks for inositol phosphoglycans". Synlett, volume 2003, issue 9, pages 1370-1372. doi : 10.1055/s-2003-40339
  5. Michael Podeschwa, Oliver Plettenburg, Jochen vom Brocke, Oliver Block, Stephan Adelt, Hans-Josef Altenbach (2003): "Stereoselective synthesis of myo-, neo-, L-chiro, D-chiro, allo-, scyllo-, and epi-inositol systems via conduritols prepared from p-benzoquinone". European Journal of Organic Chemistry, volume 2003, issue 10, pages 1958-1972. doi : 10.1002/ejoc.200200572
  6. Larry E Brammer Jr., Tomas Hudlicky (1998): "Inositol synthesis: concise preparation of l-chiro-inositol and muco-inositol from a common intermediate". Tetrahedron: Asymmetry, volume 9, issue 12, 19 june , pages 2011-2014 doi : 10.1016/S0957-4166(98)00182-7
  7. Howard A. J. Carless, K. Busia, O. Z. Oak (1993): "Microbial oxidation of benzene as a route to inositol stereoisomers and (±)-quebrachitol". Synlett, volume 1993, issue 9, pages 672-674. doi : 10.1055/s-1993-22567
  8. 1 2 Christine Sue Chen Lee, Manroshan Singh, Chin-Hoe Teh, Dazylah Darji, Azhar Ahmad & Zairossani Mohd Nor (2023): "Modification of quebrachitol extracted from natural rubber serum (NRS) to L-chiro-inositol for pharmaceutical and nutraceutical applications". Journal of Rubber Research, volume 26, pages 179–192 doi : 10.1007/s42464-023-00218-2
  9. Joseph Larner (2000): "D-chiro-inositol – Its functional role in insulin action and its deficit in insulin resistance". Journal of Diabetes Research, volume 3, pages 47-60. doi : 10.1080/15604280212528
  10. Gladys Nuissier a, Faïza Diaba b, Micheline Grignon-Dubois a (2008): "Bioactive agents from beach waste: Syringodium flotsam evaluation as a new source of L-chiro-inositol". Innovative Food Science & Emerging Technologies, volume 9, issue 3, pages 396-400. doi : 10.1016/j.ifset.2007.12.002
  11. Michael F. L'Annunziata, Juan González Iturbe, Luis A. Olivares Orozco (1977) "Microbial epimerization of myo-inositol to chiro-inositol in soil". Soil Science Society of America Journal, Division S-3 - Soil Microbiology and Biochemistry, volume 41, issue 4, pages 733-736. doi : 10.2136/sssaj1977.03615995004100040024x