2'''-acetyl-6'''-hydroxyneomycin C deacetylase

Last updated
2'''-acetyl-6'''-hydroxyneomycin C deacetylase
Identifiers
EC no. 3.5.1.113
Databases
IntEnz IntEnz view
BRENDA BRENDA entry
ExPASy NiceZyme view
KEGG KEGG entry
MetaCyc metabolic pathway
PRIAM profile
PDB structures RCSB PDB PDBe PDBsum
Search
PMC articles
PubMed articles
NCBI proteins

2'''-acetyl-6'''-hydroxyneomycin C deacetylase (EC 3.5.1.113, neoL (gene)) is an enzyme with systematic name 2'''-acetyl-6'''-hydroxyneomycin C hydrolase (acetate-forming). [1] This enzyme catalyses the following chemical reaction

2'''-acetyl-6'''-deamino-6'''-hydroxyneomycin C + H2O 6'''-deamino-6'''-hydroxyneomycin C + acetate

This enzyme is involved in biosynthesis of aminoglycoside antibiotics of the [neomycin] family.

Related Research Articles

<span class="mw-page-title-main">Neomycin</span> Type of antibiotic

Neomycin is an aminoglycoside antibiotic that displays bactericidal activity against gram-negative aerobic bacilli and some anaerobic bacilli where resistance has not yet arisen. It is generally not effective against gram-positive bacilli and anaerobic gram-negative bacilli. Neomycin comes in oral and topical formulations, including creams, ointments, and eyedrops. Neomycin belongs to the aminoglycoside class of antibiotics that contain two or more amino sugars connected by glycosidic bonds.

In chemistry, acetylation is an organic esterification reaction with acetic acid. It introduces an acetyl group into a chemical compound. Such compounds are termed acetate esters or simply acetates. Deacetylation is the opposite reaction, the removal of an acetyl group from a chemical compound.

Acetyl-CoA synthetase (ACS) or Acetate—CoA ligase is an enzyme involved in metabolism of acetate. It is in the ligase class of enzymes, meaning that it catalyzes the formation of a new chemical bond between two large molecules.

The enzyme cephalosporin-C deacetylase (EC 3.1.1.41) catalyzes the reaction

In enzymology, an acetylornithine deacetylase (EC 3.5.1.16) is an enzyme that catalyzes the chemical reaction

In enzymology, a N-acetyl-beta-alanine deacetylase (EC 3.5.1.21) is an enzyme that catalyzes the chemical reaction

In enzymology, a N-acetyldiaminopimelate deacetylase (EC 3.5.1.47) is an enzyme that catalyzes the chemical reaction

<span class="mw-page-title-main">N-acetylglucosamine-6-phosphate deacetylase</span>

In enzymology, N-acetylglucosamine-6-phosphate deacetylase (EC 3.5.1.25), also known as GlcNAc-6-phosphate deacetylase or NagA, is an enzyme that catalyzes the deacetylation of N-acetylglucosamine-6-phosphate (GlcNAc-6-P) to glucosamine-6-phosphate (GlcN-6-P):

In enzymology, a N-acetylglucosaminylphosphatidylinositol deacetylase (EC 3.5.1.89) is an enzyme that catalyzes the chemical reaction

In enzymology, a cysteine synthase is an enzyme that catalyzes the chemical reaction

<span class="mw-page-title-main">Ribostamycin</span> Aminoglycoside antibiotic

Ribostamycin is an aminoglycoside-aminocyclitol antibiotic isolated from a streptomycete, Streptomyces ribosidificus, originally identified in a soil sample from Tsu City of Mie Prefecture in Japan. It is made up of 3 ring subunits: 2-deoxystreptamine (DOS), neosamine C, and ribose. Ribostamycin, along with other aminoglycosides with the DOS subunit, is an important broad-spectrum antibiotic with important use against human immunodeficiency virus and is considered a critically important antimicrobial by the World Health Organization., Resistance against aminoglycoside antibiotics, such as ribostamycin, is a growing concern. The resistant bacteria contain enzymes that modify the structure through phosphorylation, adenylation, and acetylation and prevent the antibiotic from being able to interact with the bacterial ribosomal RNAs.

Paromamine 6'-oxidase (EC 1.1.3.43, btrQ (gene), neoG (gene), kanI (gene), tacB (gene)) is an enzyme with systematic name paromamine:oxygen 6'-oxidoreductase. This enzyme catalyses the following chemical reaction

6'''-hydroxyneomycin C oxidase (EC 1.1.3.44, neoG (gene)) is an enzyme with systematic name 6'''-deamino-6'''-hydroxyneomycin C:oxygen 6'''-oxidoreductase. This enzyme catalyses the following chemical reaction

2-deoxystreptamine N-acetyl-D-glucosaminyltransferase is an enzyme with systematic name UDP-N-acetyl-alpha-D-glucosamine:2-deoxystreptamine N-acetyl-D-glucosaminyltransferase. This enzyme catalyses the following chemical reaction

UDP-GlcNAc:ribostamycin N-acetylglucosaminyltransferase is an enzyme with systematic name UDP-N-acetyl-alpha-D-glucosamine:ribostamycin N-acetylglucosaminyltransferase. This enzyme catalyses the following chemical reaction

Neomycin C transaminase is an enzyme with systematic name 2-oxoglutarate:neomycin C aminotransferase. This enzyme catalyses the following chemical reaction

NEOL may refer to:

N-acetyl-1-D-myo-inositol-2-amino-2-deoxy-alpha-D-glucopyranoside deacetylase (EC 3.5.1.103, MshB) is an enzyme with systematic name 1-(2-acetamido-2-deoxy-alpha-D-glucopyranosyl)-1D-myo-inositol acetylhydrolase. This enzyme catalyses the following chemical reaction

UDP-3-O-acyl-N-acetylglucosamine deacetylase (EC 3.5.1.108, LpxC protein, LpxC enzyme, LpxC deacetylase, deacetylase LpxC, UDP-3-O-acyl-GlcNAc deacetylase, UDP-3-O-((R)-3-hydroxymyristoyl)-N-acetylglucosamine deacetylase, UDP-(3-O-acyl)-N-acetylglucosamine deacetylase, UDP-3-O-(R-3-hydroxymyristoyl)-N-acetylglucosamine deacetylase, UDP-(3-O-(R-3-hydroxymyristoyl))-N-acetylglucosamine deacetylase) is an enzyme with systematic name UDP-3-O-((3R)-3-hydroxymyristoyl)-N-acetylglucosamine amidohydrolase. This enzyme catalyses the following chemical reaction

2'-N-acetylparomamine deacetylase (EC 3.5.1.112, btrD (gene), neoL (gene), kanN (gene)) is an enzyme with systematic name 2'-N-acetylparomamine hydrolase (acetate-forming). This enzyme catalyses the following chemical reaction

References

  1. Yokoyama K, Yamamoto Y, Kudo F, Eguchi T (April 2008). "Involvement of two distinct N-acetylglucosaminyltransferases and a dual-function deacetylase in neomycin biosynthesis". ChemBioChem. 9 (6): 865–9. doi:10.1002/cbic.200700717. PMID   18311744.