3,9-Divinyl-2,4,8,10-tetraoxaspiro(5.5)undecane

Last updated
3,9-Divinyl-2,4,8,10-tetraoxaspiro[5.5]undecane
DVTOSU Molekulstruktur.svg
Names
Preferred IUPAC name
3,9-Diethenyl-2,4,8,10-tetraoxaspiro[5.5]undecane
Identifiers
3D model (JSmol)
ECHA InfoCard 100.000.994 OOjs UI icon edit-ltr-progressive.svg
EC Number
  • 201-092-7
PubChem CID
UNII
  • InChI=1S/C11H16O4/c1-3-9-12-5-11(6-13-9)7-14-10(4-2)15-8-11/h3-4,9-10H,1-2,5-8H2
    Key: OOXMQACSWCZQLX-UHFFFAOYSA-N
  • C=CC1OCC2(CO1)COC(OC2)C=C
Properties
C11H16O4
Molar mass 212.24 g·mol −1
Appearancecrystalline solid [1]
Melting point 43–46°C [1]
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).

3,9-Divinyl-2,4,8,10-tetraoxaspiro[5.5]undecane (DVTOSU) is a bicyclic organic molecule having a central quaternary carbon atom (a spiro atom) with which two alicyclic rings are linked, each comprising five atoms. DVTOSU is a diallyl acetal and the precursor for the isomeric ketene acetal monomer 3,9-diethylidene-2,4,8,10-tetraoxaspiro[5.5]undecane (DETOSU) which is a building block for polyorthoesters.

Contents

Nomenclature

According to the nomenclature proposed [2] by Adolf von Baeyer, the spiro compound is a spiro[5.5]undecane or, due to its four oxygen atoms, a 2,4,8,10-tetraoxaspiro[5.5]undecane which carries one allyl group in each of the 3 and 9 positions. [3]

Production

Condensation products from propenal and pentaerythritol were first described in 1950. [4] [5] The synthesis is carried using a general synthesis method for acetals at acid pH (pH 3-5) by reacting an alcohol with an excess of aldehyde, which is stabilized with hydroquinone in the case of propenal, which tends to polymerize at elevated temperature.

DVTOSU-Bildungsreaktion DVTOSU Bildungsreaktion.svg
DVTOSU-Bildungsreaktion

After 19 hours of heating under reflux, neutralization of the oxalic acid, removal of excess aldehyde and the reaction water, the residue is fractionated under vacuum and diallylidene pentaerythritol is obtained in 87% yield. After recrystallization from 60% methanol, pure DVTOSU is obtained in 79% yield with a boiling point of 108-110 °C at 2 Torr and a melting point of 42-42 °C. The degree of conversion to acetal is determined by the equilibrium constant of the reaction:

GG-Reaktion zu Acetalen GG-Reaktion zu Acetalen.svg
GG-Reaktion zu Acetalen

The most common technique to complete the acetal formation is to remove the reaction water by azeotropic distillation with organic solvents that are not miscible with water, such as benzene or toluene. The tendency of propenal to polymerize at elevated temperatures is problematic, as well as its high volatility at elevated temperatures (which are, however, required to remove the reaction water). The low space-time yield of the acetal formation reaction requires long reaction times at elevated temperatures, at which the nucleophilic addition of water and alcohol to the double bond of the unsaturated aldehyde also leads to undesired by-products. The adaptation of the reaction conditions to these requirements enables the production of DVTOSU in 80% yield after 50 min reaction time at 80 °C reaction temperature and 20% excess aldehyde. [6] The removal of the reaction water by azeotropic distillation with benzene (as carrier) shortens the reaction time to 10h, whereby after fractional distillation DVTOSU is obtained in 75% yield with a boiling point of 138-141 °C at 12 Torr. [7] Cyclic acetals can also be produced from 1,3-diols with propenal under very gentle (room temperature) and continuous process conditions followed by continuous extraction with, for example, n-hexane in yields of up to 90%. [8]

Properties

3,9-Divinyl-2,4,8,10-tetraoxaspiro[5.5]undecane is without impurity a white crystalline powder. [1] However, DVTOSU is often sold as a liquid, due to its low crystallization tendency. [9] The highly variable data on yields and boiling points during the first fractionated distillation indicate by-products, e.g. by rearrangement of the double bonds or nucleophilic addition. The production of pure DVTOSU as a solid requires repeated recrystallization from hydrocarbons such as pentane or n-hexane or aqueous methanol.

Use

Alcohols, such as methanol, and acids, such as ethanoic acid, can be added in a nucleophilic addition reaction to the allylic double bonds of 3,9-divinyl-2,4,8,10-tetraoxaspiro[5.5]undecane to the corresponding 3,9-dimethoxyethyl- or 3,9-diacetoxyethyl-2,4,8,10-tetraoxaspiro[5.5]undecane. [4] Similarly, hydrogen chloride can be added in 80% yield or hydrogen cyanide in 50% yield to the corresponding 3,9-bis(2-chloroethyl)- or 3,9-bis(2-cyanoethyl)-2,4,8,10-tetraoxaspiro[5.5]undecane. [6] In the presence of strong acids, such as boron trifluoride diethyl etherate, 3,9-divinyl-2,4,8,10-tetraoxaspiro[5.5]undecane reacts with diols or diacids to form rubber-like polymers which can be crosslinked to hard resins by further acid addition and elevated temperatures. [10] According to the authors, the terminal C atoms of the allyl groups of DVTOSU are linked to the di- or polyol via ether bonds. The diallylacetal 3,9-divinyl-2,4,8,10-tetraoxaspiro[5.5]undecane, DVTOSU, is the starting compound for the ketene diacetal 3,9-diethylidene-2,4,8,10-tetraoxaspiro[5.5]undecane, DETOSU, which is formed by shifting the double bonds from the allyl to the vinyl position. [7]

DETOSU-Bildungsreaktion DETOSU Bildungsreaktion.svg
DETOSU-Bildungsreaktion

DETOSU, in turn, is of important as a reactive monomer for the formation of polyorthoesters.

Related Research Articles

<span class="mw-page-title-main">Alcohol (chemistry)</span> Organic compound with at least one hydroxyl (–OH) group

In chemistry, an alcohol is a type of organic compound that carries at least one hydroxyl functional group bound to a saturated carbon atom. Alcohols range from the simple, like methanol and ethanol, to complex, like sucrose and cholesterol. The presence of an OH group strongly modifies the properties of hydrocarbons, conferring hydrophilic (water-loving) properties. The OH group provides a site at which many reactions can occur.

<span class="mw-page-title-main">Ether</span> Organic compounds made of alkyl/aryl groups bound to oxygen (R–O–R)

In organic chemistry, ethers are a class of compounds that contain an ether group—an oxygen atom connected to two alkyl or aryl groups. They have the general formula R−O−R′, where R and R′ represent the alkyl or aryl groups. Ethers can again be classified into two varieties: if the alkyl or aryl groups are the same on both sides of the oxygen atom, then it is a simple or symmetrical ether, whereas if they are different, the ethers are called mixed or unsymmetrical ethers. A typical example of the first group is the solvent and anaesthetic diethyl ether, commonly referred to simply as "ether". Ethers are common in organic chemistry and even more prevalent in biochemistry, as they are common linkages in carbohydrates and lignin.

<span class="mw-page-title-main">Ketone</span> Organic compounds of the form >C=O

In organic chemistry, a ketone is an organic compound with the structure R−C(=O)−R', where R and R' can be a variety of carbon-containing substituents. Ketones contain a carbonyl group −C(=O)−. The simplest ketone is acetone, with the formula (CH3)2CO. Many ketones are of great importance in biology and in industry. Examples include many sugars (ketoses), many steroids, and the solvent acetone.

<span class="mw-page-title-main">Aldehyde</span> Organic compound containing the functional group R−CH=O

In organic chemistry, an aldehyde is an organic compound containing a functional group with the structure R−CH=O. The functional group itself can be referred to as an aldehyde but can also be classified as a formyl group. Aldehydes are a common motif in many chemicals important in technology and biology.

<span class="mw-page-title-main">Acetal</span> Organic compound with the structure >C(O–)2

In organic chemistry, an acetal is a functional group with the connectivity R2C(OR')2. Here, the R groups can be organic fragments or hydrogen, while the R' groups must be organic fragments not hydrogen. The two R' groups can be equivalent to each other or not. Acetals are formed from and convertible to aldehydes or ketones and have the same oxidation state at the central carbon, but have substantially different chemical stability and reactivity as compared to the analogous carbonyl compounds. The central carbon atom has four bonds to it, and is therefore saturated and has tetrahedral geometry.

The following outline is provided as an overview of and topical guide to organic chemistry:

A diol is a chemical compound containing two hydroxyl groups. An aliphatic diol is also called a glycol. This pairing of functional groups is pervasive, and many subcategories have been identified.

<span class="mw-page-title-main">Acrolein</span> Chemical compound

Acrolein is the simplest unsaturated aldehyde. It is a colorless liquid with a foul and acrid aroma. The smell of burnt fat is caused by glycerol in the burning fat breaking down into acrolein. It is produced industrially from propene and mainly used as a biocide and a building block to other chemical compounds, such as the amino acid methionine.

A tetrahedral intermediate is a reaction intermediate in which the bond arrangement around an initially double-bonded carbon atom has been transformed from trigonal to tetrahedral. Tetrahedral intermediates result from nucleophilic addition to a carbonyl group. The stability of tetrahedral intermediate depends on the ability of the groups attached to the new tetrahedral carbon atom to leave with the negative charge. Tetrahedral intermediates are very significant in organic syntheses and biological systems as a key intermediate in esterification, transesterification, ester hydrolysis, formation and hydrolysis of amides and peptides, hydride reductions, and other chemical reactions.

<span class="mw-page-title-main">Claisen rearrangement</span> Chemical reaction

The Claisen rearrangement is a powerful carbon–carbon bond-forming chemical reaction discovered by Rainer Ludwig Claisen. The heating of an allyl vinyl ether will initiate a [3,3]-sigmatropic rearrangement to give a γ,δ-unsaturated carbonyl, driven by exergonically favored carbonyl CO bond formation.

<span class="mw-page-title-main">Nicolaou Taxol total synthesis</span>

The Nicolaou Taxol total synthesis, published by K. C. Nicolaou and his group in 1994 concerns the total synthesis of taxol. Taxol is an important drug in the treatment of cancer but also expensive because the compound is harvested from a scarce resource, namely the pacific yew.

<span class="mw-page-title-main">Polyester</span> Category of polymers, in which the monomers are joined together by ester links

Polyester is a category of polymers that contain the ester functional group in every repeat unit of their main chain. As a specific material, it most commonly refers to a type called polyethylene terephthalate (PET). Polyesters include naturally occurring chemicals, such as in plants and insects, as well as synthetics such as polybutyrate. Natural polyesters and a few synthetic ones are biodegradable, but most synthetic polyesters are not. Synthetic polyesters are used extensively in clothing.

<span class="mw-page-title-main">Wender Taxol total synthesis</span>

Wender Taxol total synthesis in organic chemistry describes a Taxol total synthesis by the group of Paul Wender at Stanford University published in 1997. This synthesis has much in common with the Holton Taxol total synthesis in that it is a linear synthesis starting from a naturally occurring compound with ring construction in the order A,B,C,D. The Wender effort is shorter by approximately 10 steps.

<span class="mw-page-title-main">Mukaiyama Taxol total synthesis</span>

The Mukaiyama taxol total synthesis published by the group of Teruaki Mukaiyama of the Tokyo University of Science between 1997 and 1999 was the 6th successful taxol total synthesis. The total synthesis of Taxol is considered a hallmark in organic synthesis.

The Fleming–Tamao oxidation, or Tamao–Kumada–Fleming oxidation, converts a carbon–silicon bond to a carbon–oxygen bond with a peroxy acid or hydrogen peroxide. Fleming–Tamao oxidation refers to two slightly different conditions developed concurrently in the early 1980s by the Kohei Tamao and Ian Fleming research groups.

The molecular formula C11H16O4 (molar mass: 212.24 g/mol) may refer to:

Expanding monomers are monomers which increase in volume (expand) during polymerization. They can be added to monomer formulations to counteract the usual volume shrinking to manufacture products with higher quality and durability. Volume Shrinkage is in first line for the unmeltable thermosets a problem, since those are of fixed shape after polymerization completed.

Polyorthoesters are polymers with the general structure –[–R–O–C(R1, OR2)–O–R3–]n– whereas the residue R2 can also be part of a heterocyclic ring with the residue R. Polyorthoesters are formed by transesterification of orthoesters with diols or by polyaddition between a diol and a diketene acetal, such as 3,9-diethylidene-2,4,8,10-tetraoxaspiro[5.5]undecane.

3,9-Diethylidene-2,4,8,10-tetraoxaspiro[5.5]undecane (DETOSU) is a bicyclic ketene acetal derived from the isomeric allyl acetal 3,9-divinyl-2,4,8,10-tetraoxaspiro[5.5]undecane (DVTOSU). As a bifunctional monomer, DETOSU is an important building block for polyorthoesters formed by the addition of diols to the activated double bond of the diketene acetal.

<span class="mw-page-title-main">Diallyl carbonate</span> Acrylating agent

Diallyl carbonate (DAC) is a colorless liquid with a pungent odor. Its structure contains allyl groups and a functional carbonate group. The presence of double bonds in the allyl groups makes it reactive in various chemical processes. This compound plays a key role in the production of polymers, including polycarbonates and polyurethanes. Diallyl carbonate is soluble in ethanol, methanol, toluene, and chloroform. Diallyl carbonate reacts with amines, alcohols, and thiols.

References

  1. 1 2 3 Entry from 3,9-Divinyl-2,4,8,10-tetraoxaspiro[5.5 undecane] from TCI Europe, retrieved on {{{Date}}}
  2. Wolfgang Holland: Die Nomenklatur in der organischen Chemie. VEB Deutscher Verlag für Grundstoffindustrie, Leipzig 1969, S. 81.
  3. J. Heller; K. J. Himmelstein (1985), "[31] Poly(ortho ester) biodegradable polymer systems", Drug and Enzyme Targeting, Methods in Enzymology (in German), vol. 112, pp. 422–436, doi:10.1016/S0076-6879(85)12033-1, ISBN   9780121820121, PMID   3930918
  4. 1 2 H. Schulz; H. Wagner (1950), "Synthese und Umwandlungsprodukte des Acroleins", Angewandte Chemie (in German), vol. 62, no. 5, pp. 105–118, Bibcode:1950AngCh..62..105S, doi:10.1002/ange.19500620502
  5. DE 858406,H. Wagner,"Verfahren zur Herstellung von ungesättigten cyclischen Acetalen",issued 1952-12-08, assigned to Deutsche Gold- und Silber-Scheideanstalt vormals Roessler
  6. 1 2 R. F. Fischer; C. W. Smith (1960), "Cyclic Acrolein Acetals", The Journal of Organic Chemistry (in German), vol. 25, no. 3, pp. 319–324, doi:10.1021/jo01073a002
  7. 1 2 J. V. Crivello; R. Malik; Y.-L. Lai (1996), "Ketene acetal monomers: Synthesis and characterization", Journal of Polymer Science Part A: Polymer Chemistry (in German), vol. 34, no. 15, pp. 3091–3102, Bibcode:1996JPoSA..34.3091C, doi:10.1002/(SICI)1099-0518(19961115)34:15<3091::AID-POLA1>3.0.CO;2-0
  8. US 4108869,H. B. Copelin,"Preparation of an acetal from a diol and acrolein",issued 1978-8-22, assigned to E.I. Du Pont de Nemours and Co.
  9. Sigma-Aldrich Co. , product no. {{{id}}} .
  10. Frank Brown; D. E. Hudgin; R. J. Kray (1959), "Polymers from the Unsaturated Bisacetals of Pentaerythritol" (PDF), Journal of Chemical & Engineering Data (in German), vol. 4, no. 2, pp. 182–187, doi:10.1021/je60002a020, archived from the original (PDF) on 2015-09-24, retrieved 2019-04-29