4,5-Dihydroxy-2,3-pentanedione

Last updated
4,5-Dihydroxy-2,3-pentanedione
Nominal S-DPD.png
Names
Preferred IUPAC name
4,5-Dihydroxypentane-2,3-dione
Other names
1-Deoxypento-2,4-diulose
1-Deoxypentosone
Dihydroxy-2,3-pentanedione
DPD
Identifiers
3D model (JSmol)
ChEMBL
ChemSpider
PubChem CID
UNII
  • InChI=1S/C5H8O4/c1-3(7)5(9)4(8)2-6/h4,6,8H,2H2,1H3
    Key: UYTRITJAZOPLCZ-UHFFFAOYSA-N
  • CC(=O)C(=O)C(CO)O
Properties
C5H8O4
Molar mass 132.115 g·mol−1
AppearanceColorless
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).

4,5-Dihydroxy-2,3-pentanedione (DPD) is an organic compound that occurs naturally but exists as several related structures. The idealized formula for this species is CH3C(O)C(O)CH(OH)CH2OH, but it is known to exist as several other forms resulting from cyclization. It is not stable at room temperature as a pure material, which has further complicated its analysis. The (S)-stereoisomer occurs naturally. It is typically hydrated, i.e., one keto group has added water to give the geminal diol.

DPD is produced by degradation of S-adenosylhomocysteine by the action of the enzyme S-ribosylhomocysteinase. [1] The compound probably does not exist as depicted above, but as an equilibrium mixture of three hydrates.

Hydrated derivatives of dihydroxypentanedione. TPDhydratesJanda.png
Hydrated derivatives of dihydroxypentanedione.

DPD reacts with boric acid to form a borate diester known as autoinducer-2 (AI-2). AI-2 is a signaling molecule used for bacterial quorum sensing. It is produced and recognized by many Gram-negative and Gram-positive bacteria. [3] [4] AI-2 is synthesized by the reaction of DPD with boric acid [5] and is recognized by the two-component sensor kinase LuxPQ in Vibrionaceae.

Related Research Articles

<span class="mw-page-title-main">Bonnie Bassler</span> American molecular biologist

Bonnie Lynn Bassler is an American molecular biologist; the Squibb Professor in Molecular Biology and chair of the Department of Molecular Biology at Princeton University; and a Howard Hughes Medical Institute Investigator. She has researched cell-to-cell chemical communication in bacteria and discovered key insights into the mechanism by which bacteria communicate, known as quorum sensing. She has contributed to the idea that disruption of chemical signaling can be used as an antimicrobial therapy.

In biology, quorum sensing or quorum signaling (QS) is the process of cell-to-cell communication that allows bacteria to detect and respond to cell population density by gene regulation, typically as a means of acclimating to environmental disadvantages.

<i>Lactobacillus acidophilus</i> Species of bacterium

Lactobacillus acidophilus is a rod-shaped, Gram-positive, homofermentative, anaerobic microbe first isolated from infant feces in the year 1900. The species is commonly found in humans, specifically the gastrointestinal tract and oral cavity as well as some speciality fermented foods such as fermented milk or yogurt, though it is not the most common species for this. The species most readily grows at low pH levels, and has an optimum growth temperature of 37 °C. Certain strains of L. acidophilus show strong probiotic effects, and are commercially used in dairy production. The genome of L. acidophilus has been sequenced.

<i>Aliivibrio fischeri</i> Species of bacterium

Aliivibrio fischeri is a Gram-negative, rod-shaped bacterium found globally in marine environments. This bacterium grows most effectively in water with a salt concentration at around 20g/L, and at temperatures between 24 and 28°C. This species is non-pathogenic and has bioluminescent properties. It is found predominantly in symbiosis with various marine animals, such as the Hawaiian bobtail squid. It is heterotrophic, oxidase-positive, and motile by means of a tuft of polar flagella. Free-living A. fischeri cells survive on decaying organic matter. The bacterium is a key research organism for examination of microbial bioluminescence, quorum sensing, and bacterial-animal symbiosis. It is named after Bernhard Fischer, a German microbiologist.

<i>Vibrio harveyi</i> Species of bacterium

Vibrio harveyi is a Gram-negative, bioluminescent, marine bacterium in the genus Vibrio. V. harveyi is rod-shaped, motile, facultatively anaerobic, halophilic, and competent for both fermentative and respiratory metabolism. It does not grow below 4 °C. V. harveyi can be found free-swimming in tropical marine waters, commensally in the gut microflora of marine animals, and as both a primary and opportunistic pathogen of marine animals, including Gorgonian corals, oysters, prawns, lobsters, the common snook, barramundi, turbot, milkfish, and seahorses. It is responsible for luminous vibriosis, a disease that affects commercially farmed penaeid prawns. Additionally, based on samples taken by ocean-going ships, V. harveyi is thought to be the cause of the milky seas effect, in which, during the night, a uniform blue glow is emitted from the seawater. Some glows can cover nearly 6,000 sq mi (16,000 km2).

<i>N</i>-Acyl homoserine lactone Class of chemical compounds

N-Acyl homoserine lactones are a class of signaling molecules involved in bacterial quorum sensing, a means of communication between bacteria enabling behaviors based on population density.

Microbial intelligence is the intelligence shown by microorganisms. This includes complex adaptive behavior shown by single cells, and altruistic or cooperative behavior in populations of like or unlike cells. It is often mediated by chemical signalling that induces physiological or behavioral changes in cells and influences colony structures.

<span class="mw-page-title-main">Bacteria</span> Domain of microorganisms

Bacteria are ubiquitous, mostly free-living organisms often consisting of one biological cell. They constitute a large domain of prokaryotic microorganisms. Typically a few micrometres in length, bacteria were among the first life forms to appear on Earth, and are present in most of its habitats. Bacteria inhabit the air, soil, water, acidic hot springs, radioactive waste, and the deep biosphere of Earth's crust. Bacteria play a vital role in many stages of the nutrient cycle by recycling nutrients and the fixation of nitrogen from the atmosphere. The nutrient cycle includes the decomposition of dead bodies; bacteria are responsible for the putrefaction stage in this process. In the biological communities surrounding hydrothermal vents and cold seeps, extremophile bacteria provide the nutrients needed to sustain life by converting dissolved compounds, such as hydrogen sulphide and methane, to energy. Bacteria also live in mutualistic, commensal and parasitic relationships with plants and animals. Most bacteria have not been characterised and there are many species that cannot be grown in the laboratory. The study of bacteria is known as bacteriology, a branch of microbiology.

<span class="mw-page-title-main">S-ribosylhomocysteine lyase</span>

The enzyme S-ribosylhomocysteine lyase catalyzes the reaction

In biology, an autoinducer is a signaling molecule that enables detection and response to changes in the population density of bacterial cells. Synthesized when a bacterium reproduces, autoinducers pass outside the bacterium and into the surrounding medium. They are a key component of the phenomenon of quorum sensing: as the density of quorum-sensing bacterial cells increases, so does the concentration of the autoinducer. A bacterium’s detection of an autoinducer above some minimum threshold triggers altered gene expression.

<span class="mw-page-title-main">Autoinducer-2</span> Chemical compound

Autoinducer-2 (AI-2) is a furanosyl borate diester or tetrahydroxy furan that—as the name suggests—is an autoinducer, a member of a family of signaling molecules used in quorum sensing. AI-2 is one of only a few known biomolecules incorporating boron. First identified in the marine bacterium Vibrio harveyi, AI-2 is produced and recognized by many Gram-negative and Gram-positive bacteria. AI-2 arises by the reaction of 4,5-dihydroxy-2,3-pentanedione, which is produced enzymatically, with boric acid and is recognized by the two-component sensor kinase LuxPQ in Vibrionaceae.

Microorganisms engage in a wide variety of social interactions, including cooperation. A cooperative behavior is one that benefits an individual other than the one performing the behavior. This article outlines the various forms of cooperative interactions seen in microbial systems, as well as the benefits that might have driven the evolution of these complex behaviors.

Interspecies quorum sensing is a type of quorum sensing in which bacteria send and receive signals to other species besides their own. This is accomplished by the secretion of signaling molecules which trigger a response in nearby bacteria at high enough concentrations. Once the molecule hits a certain concentration it triggers the transcription of certain genes such as virulence factors. It has been discovered that bacteria can not only interact via quorum sensing with members of their own species but that there is a kind of universal molecule that allows them to gather information about other species as well. This universal molecule is called autoinducer 2 or AI-2.

<span class="mw-page-title-main">Bioluminescent bacteria</span> Bacteria that produce light through chemiluminescence

Bioluminescent bacteria are light-producing bacteria that are predominantly present in sea water, marine sediments, the surface of decomposing fish and in the gut of marine animals. While not as common, bacterial bioluminescence is also found in terrestrial and freshwater bacteria. These bacteria may be free living or in symbiosis with animals such as the Hawaiian Bobtail squid or terrestrial nematodes. The host organisms provide these bacteria a safe home and sufficient nutrition. In exchange, the hosts use the light produced by the bacteria for camouflage, prey and/or mate attraction. Bioluminescent bacteria have evolved symbiotic relationships with other organisms in which both participants benefit each other equally. Bacteria also use luminescence reaction for quorum sensing, an ability to regulate gene expression in response to bacterial cell density.

<i>Myxococcus</i> Genus of bacteria

Myxococcus is a genus of bacteria in the family Myxococcaceae. Myxococci are Gram-negative, spore-forming, chemoorganotrophic, obligate aerobes. They are elongated rods with rounded or tapered ends, and they are nonflagellated. The cells utilize gliding motility to move and can predate other bacteria. The genus has been isolated from soil.

Everett Peter Greenberg is an American microbiologist. He is the inaugural Eugene and Martha Nester Professor of Microbiology at the Department of Microbiology of the University of Washington School of Medicine. He is best known for his research on quorum sensing, and has received multiple awards for his work.

A phytobiome consists of a plant (phyto) situated in its specific ecological area (biome), including its environment and the associated communities of organisms which inhabit it. These organisms include all macro- and micro-organisms living in, on, or around the plant including bacteria, archaea, fungi, protists, insects, animals, and other plants. The environment includes the soil, air, and climate. Examples of ecological areas are fields, rangelands, forests. Knowledge of the interactions within a phytobiome can be used to create tools for agriculture, crop management, increased health, preservation, productivity, and sustainability of cropping and forest systems.

Diffusible signal factor (DSF) is found in several gram-negative bacteria and play a role in the formation of biofilms, motility, virulence, and antibiotic resistance. Xanthomonas campestris was the first bacteria known to have DSF. The synthesis of the DSF can be seen in rpfF and rpfB enzymes. An understanding of the DSF signaling mechanism could lead to further disease control.

Cholera autoinducer-1 (CAI-1) has many important functions and applications within Vibrio cholerae. CAI-1 is a chemokine released by the bacterium V. cholerae and is a quorum sensing bacterium that is capable of producing a biofilm, and is fatal to humans upon contamination without immediate medical intervention; due to the cholera toxin with-which it produces. CAI-1 is known structurally as a (S)-3-hydroxytridecan and regulates expression of virulence factors. CAI-1 is a signaling molecule between individual V. cholerae microbes, that communicate to each other to react to the surrounding environment.

References

  1. Jinge Zhu, Eric Dizin, Xubo Hu, Anne-Sophie Wavreille, Junguk Park, Dehua Pei "S-Ribosylhomocysteinase (LuxS) Is a Mononuclear Iron Protein" Biochemistry, 2003, volume 42, pp 4717–4726. doi : 10.1021/bi034289j
  2. Roberta J. Worthington and Christian Melander "Deconvoluting Interspecies Bacterial Communication" Angew. Chem. Int. Ed. 2012, volume 51, 6314 – 6315. doi : 10.1002/anie.201202440
  3. Miller, Stephen T.; Xavier, Karina B.; Campagna, Shawn R.; Taga, Michiko E.; Semmelhack, Martin F.; Bassler, Bonnie L.; Hughson, Frederick M. (2004). "Salmonella typhimurium Recognizes a Chemically Distinct Form of the Bacterial Quorum-Sensing Signal AI-2". Molecular Cell . 15 (5): 677–687. doi: 10.1016/j.molcel.2004.07.020 . PMID   15350213.
  4. Miller, M. B.; Bassler, B. L. (2001). "Quorum sensing in bacteria". Annual Review of Microbiology . 55: 165–199. doi:10.1146/annurev.micro.55.1.165. PMID   11544353.
  5. "Chemistry - Queen Mary University of London".