Names | |||
---|---|---|---|
Preferred IUPAC name 4-Nitrophenol | |||
Other names | |||
Identifiers | |||
3D model (JSmol) | |||
ChEBI | |||
ChEMBL | |||
ChemSpider | |||
DrugBank | |||
ECHA InfoCard | 100.002.556 | ||
KEGG | |||
PubChem CID | |||
UNII | |||
CompTox Dashboard (EPA) | |||
| |||
| |||
Properties | |||
C6H5NO3 | |||
Molar mass | 139.110 g·mol−1 | ||
Appearance | Colourless to pale yellow crystals | ||
Melting point | 113 to 114 °C (235 to 237 °F; 386 to 387 K) | ||
Boiling point | 279 °C (534 °F; 552 K) | ||
10 g/L (15 °C) 11.6 g/L (20 °C) 16 g/L (25 °C) | |||
Acidity (pKa) | 7.15 (in water), | ||
-69.5·10−6 cm3/mol | |||
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa). |
4-Nitrophenol (also called p-nitrophenol or 4-hydroxynitrobenzene) is a phenolic compound that has a nitro group at the opposite position of the hydroxyl group on the benzene ring.
4-nitro phenol is a slightly yellow, crystalline material, moderately toxic.
It shows two polymorphs in the crystalline state. The alpha-form is colorless pillars, unstable at room temperature, and stable toward sunlight. The beta-form is yellow pillars, stable at room temperature, and gradually turns red upon irradiation of sunlight. Usually 4-nitrophenol exists as a mixture of these two forms.
In solution, 4-nitrophenol has a dissociation constant (pKa) of 7.15 at 25 °C. [2]
4-Nitrophenol can be prepared by nitration of phenol using dilute nitric acid at room temperature. The reaction produces a mixture of 2-nitrophenol and 4-nitrophenol.
4-Nitrophenol(pH indicator) | ||
below pH 5.4 | above pH 7.5 | |
5.4 | ⇌ | 7.5 |
4-Nitrophenol can be used as a pH indicator. A solution of 4-nitrophenol appears colorless below pH 5.4 and yellow above pH 7.5. [3] This color-changing property makes this compound useful as a pH indicator. The yellow color of the 4-nitrophenolate form (or 4-nitrophenoxide) is due to a maximum of absorbance at 405 nm (ε = 18.3 to 18.4 mM−1 cm−1 in strong alkali). [4] In contrast, 4-nitrophenol has a weak absorbance at 405 nm (ε = 0.2 mM−1 cm−1). [4] The isosbestic point for 4-nitrophenol/4-nitrophenoxide is at 348 nm, with ε = 5.4 mM−1 cm−1. [5]
In the laboratory, it is used to detect the presence of alkaline phosphatase activity by hydrolysis of PNPP. In basic conditions, presence of hydrolytic enzymes will turn reaction vessel yellow. [7]
4-Nitrophenol is a product of the enzymatic cleavage of several synthetic substrates such as 4-nitrophenyl phosphate (used as a substrate for alkaline phosphatase), 4-nitrophenyl acetate (for carbonic anhydrase), 4-nitrophenyl-β-D-glucopyranoside and other sugar derivatives which are used to assay various glycosidase enzymes. Amounts of 4-nitrophenol produced by a particular enzyme in the presence of its corresponding substrate can be measured with a spectrophotometer at or around 405 nm and used as a proxy measurement for the amount of the enzyme activity in the sample.
Accurate measurement of enzyme activity requires that the 4-nitrophenol product is fully deprotonated, existing as 4-nitrophenolate, given the weak absorbance of 4-nitrophenol at 405 nm. Complete ionization of the alcohol functional group affects the conjugation of the pi bonds on the compound. A lone pair from the oxygen can be delocalized via conjugation to the benzene ring and nitro group. Since the length of conjugated systems affects the color of organic compounds, this ionization change causes the 4-nitrophenol to turn yellow when fully deprotonated and existing as 4-nitrophenolate. [8]
A common mistake in measuring enzyme activity using these substrates is to perform the assays at neutral or acidic pH without considering that only part of the chromophoric product is ionized. The problem can be overcome by stopping the reaction with sodium hydroxide (NaOH) or other strong base, which converts all product into 4-nitrophenoxide; final pH must be > ca. 9.2 to ensure more than 99% of the product is ionised. Alternatively enzyme activity can be measured at 348 nm, the isosbestic point for 4-nitrophenol/4-nitrophenoxide.
4-Nitrophenol irritates the eyes, skin, and respiratory tract. [9] It may also cause inflammation of those parts. It has a delayed interaction with blood and forms methaemoglobin which is responsible for methemoglobinemia, potentially causing cyanosis, confusion, and unconsciousness. [9] When ingested, it causes abdominal pain and vomiting. Prolonged contact with skin may cause allergic response. Genotoxicity and carcinogenicity of 4-nitrophenol are not known. The LD50 in mice is 282 mg/kg and in rats is 202 mg/kg (p.o.).
Cellulase is any of several enzymes produced chiefly by fungi, bacteria, and protozoans that catalyze cellulolysis, the decomposition of cellulose and of some related polysaccharides:
In spectroscopy, an isosbestic point is a specific wavelength, wavenumber or frequency at which the total absorbance of a sample does not change during a chemical reaction or a physical change of the sample. The word derives from two Greek words: "iso", meaning "equal", and "sbestos", meaning "extinguishable".
In organic chemistry, nitro compounds are organic compounds that contain one or more nitro functional groups. The nitro group is one of the most common explosophores used globally. The nitro group is also strongly electron-withdrawing. Because of this property, C−H bonds alpha (adjacent) to the nitro group can be acidic. For similar reasons, the presence of nitro groups in aromatic compounds retards electrophilic aromatic substitution but facilitates nucleophilic aromatic substitution. Nitro groups are rarely found in nature. They are almost invariably produced by nitration reactions starting with nitric acid.
Browning is the process of food turning brown due to the chemical reactions that take place within. The process of browning is one of the chemical reactions that take place in food chemistry and represents an interesting research topic regarding health, nutrition, and food technology. Though there are many different ways food chemically changes over time, browning in particular falls into two main categories: enzymatic versus non-enzymatic browning processes.
The MTT assay is a colorimetric assay for assessing cell metabolic activity. NAD(P)H-dependent cellular oxidoreductase enzymes may, under defined conditions, reflect the number of viable cells present. These enzymes are capable of reducing the tetrazolium dye MTT, which is chemically 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, to its insoluble formazan, which has a purple color. Other closely related tetrazolium dyes including XTT, MTS and the WSTs, are used in conjunction with the intermediate electron acceptor, 1-methoxy phenazine methosulfate (PMS). With WST-1, which is cell-impermeable, reduction occurs outside the cell via plasma membrane electron transport. However, this traditionally assumed explanation is currently contended as proof has also been found of MTT reduction to formazan in lipidic cellular structures without apparent involvement of oxidoreductases.
Chlorobenzene is the simplest of the chlorobenzenes, consisting of a benzene ring substituted with one chlorine atom. Its chemical formula is C6H5Cl. This colorless, flammable liquid is a common solvent and a widely used intermediate in the manufacture of other chemicals.
Umbelliferone, also known as 7-hydroxycoumarin, hydrangine, skimmetine, and beta-umbelliferone, is a natural product of the coumarin family.
In biochemistry, ABTS is a chemical compound used to observe the reaction kinetics of specific enzymes. A common use for it is in the enzyme-linked immunosorbent assay (ELISA) to detect the binding of molecules to each other.
ortho-Nitrophenyl-β-galactoside (ONPG) is a colorimetric and spectrophotometric substrate for detection of β-galactosidase activity. This compound is normally colorless. However, if β-galactosidase is present, it hydrolyzes the ONPG molecule into galactose and ortho-nitrophenol. The latter compound has a yellow color that can be used to check for enzyme activity by means of a colorimetric assay. β-Galactosidase is required for lactose utilization, so the intensity of the color produced can be used as a measure of the enzymatic rate.
Ethylphenol (4-EP) is an organic compound with the formula C2H5C6H4OH. It is one of three isomeric ethylphenols. A white solid, it occurs as an impurity in xylenols and as such is used in the production of some commercial phenolic resins. It is also a precursor to 4-vinylphenol.
Bromocresol green (BCG) is a dye of the triphenylmethane family. It belongs to a class of dyes called sulfonephthaleins. It is used as a pH indicator in applications such as growth mediums for microorganisms and titrations. In clinical practise, it is commonly used as a diagnostic technique. The most common use of bromocresol green is to measure serum albumin concentration within mammalian blood samples in possible cases of kidney failure and liver disease. In chemistry, bromocresol green is used in Thin-layer chromatography staining solutions to visualize acidic compounds.
Catechol 1,2- dioxygenase is an enzyme that catalyzes the oxidative ring cleavage of catechol to form cis,cis-muconic acid:
Nitrophenols are compounds of the formula HOC6H5−x(NO2)x. The conjugate bases are called nitrophenolates. Nitrophenols are more acidic than phenol itself.
4-Aminophenol (or para-aminophenol or p-aminophenol) is an organic compound with the formula H2NC6H4OH. Typically available as a white powder, it is commonly used as a developer for black-and-white film, marketed under the name Rodinal.
Chlorophenol red is an indicator dye that changes color from yellow to violet in the pH range 5.4 to 6.8. The pH of a substance is determined by taking the negative logarithm of the Hydronium ion concentration and the indictor changes color due to the dissociation of H+ ions. The lambda max is at 572 nm.
para-Nitrophenylphosphate (pNPP) is a non-proteinaceous chromogenic substrate for alkaline and acid phosphatases used in ELISA and conventional spectrophotometric assays. Phosphatases catalyze the hydrolysis of pNPP liberating inorganic phosphate and the conjugate base of para-nitrophenol (pNP). The resulting phenolate is yellow, with a maximal absorption at 405 nm. This property can be used to determine the activity of various phosphatases including alkaline phosphatase (AP) and protein tyrosine phosphatase (PTP).
Aryldialkylphosphatase is a metalloenzyme that hydrolyzes the triester linkage found in organophosphate insecticides:
Bromopyrogallol red is frequently used in analytical chemistry as a reagent for spectrophometric analysis and as an complexometric indicator.
1,4-Dichloro-2-nitrobenzene is an organic compound with the formula C6H3Cl2NO2. One of several isomers of dichloronitrobenzene, it is a yellow solid that is insoluble in water. It is produced by nitration of 1,4-dichlorobenzene. It is a precursor to many derivatives of commercial interest. Hydrogenation gives 1,4-dichloroaniline. Nucleophiles displace the chloride adjacent to the nitro group: ammonia gives the aniline derivative, aqueous base gives the phenol derivative, and methoxide gives the anisole derivative. These compounds are respectively 4-chloro-2-nitroaniline, 4-chloro-2-nitrophenol, and 4-chloro-2-nitroanisole.
N-acetyl-β-d-glucosaminidase(EC 3.2.1.30; EC 3.2.1.52) is a mesophilic hydrolase that specifically hydrolyzes N-acetyl-glucosides. The enzyme is found across a wide variety of marine and terrestrial creatures with the primary function of breaking down oligosaccharides in the presence of water. One of the primary functions of the enzyme is to target and hydrolyze oligosaccharides containing chitin. In this chitinase function, the enzyme contributes to the ability of many organisms to break down chitin-containing molecules and subsequently digest or re-uptake environmental chitin, carbon, or nitrogen. The enzyme's crystal structure varies slightly across organisms, but is characterized by three or four domains with one active site. Across proteins, the active site entails an α-β barrel with either an arginine or tryptophan residues in the barrel pocket to bind incoming substrate.
Only one name is retained, phenol, for C6H5-OH, both as a preferred name and for general nomenclature. The structure is substitutable at any position. Locants 2, 3, and 4 are recommended, not o, m, and p.