ATP5F1A

Last updated
ATP5F1A
Protein ATP5A1 PDB 1bmf.png
Identifiers
Aliases ATP5F1A , ATP5A, ATP5AL2, ATPM, HEL-S-123m, MC5DN4, MOM2, OMR, ORM, hATP1, COXPD22, ATP synthase, H+ transporting, mitochondrial F1 complex, alpha 1, ATP synthase, H+ transporting, mitochondrial F1 complex, alpha subunit 1, cardiac muscle, ATP5A1, ATP synthase F1 subunit alpha
External IDs OMIM: 164360 MGI: 88115 HomoloGene: 2985 GeneCards: ATP5F1A
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

NM_001001935
NM_001001937
NM_001257334
NM_001257335
NM_004046

Contents

NM_007505

RefSeq (protein)

NP_001001935
NP_001001937
NP_001244263
NP_001244264
NP_004037

NP_031531

Location (UCSC) Chr 18: 46.08 – 46.1 Mb Chr 18: 77.86 – 77.87 Mb
PubMed search [3] [4]
Wikidata
View/Edit Human View/Edit Mouse

ATP synthase F1 subunit alpha, mitochondrial is an enzyme that in humans is encoded by the ATP5F1A gene. [5] [6]

Function

This gene encodes a subunit of mitochondrial ATP synthase. Mitochondrial ATP synthase catalyzes ATP synthesis, using an electrochemical gradient of protons across the inner membrane during oxidative phosphorylation. ATP synthase is composed of two linked multi-subunit complexes: the soluble catalytic core, F1, and the membrane-spanning component, Fo, comprising the proton channel. The catalytic portion of mitochondrial ATP synthase consists of 5 different subunits (alpha, beta, gamma, delta, and epsilon) assembled with a stoichiometry of 3 alpha, 3 beta, and a single representative of the other 3. The proton channel consists of three main subunits (a, b, c). This gene encodes the alpha subunit of the catalytic core. Alternatively spliced transcript variants encoding the same protein have been identified. Pseudogenes of this gene are located on chromosomes 9, 2, and 16. [6]

Structure

The ATP5F1A gene, located on the q arm of chromosome 18 in position 21, is made up of 13 exons and is 20,090 base pairs in length. [6] The ATP5F1A protein weighs 59.7 kDa and is composed of 553 amino acids. [7] [8] The protein is a subunit of the catalytic portion of the F1Fo ATPase, also known as Complex V, which consists of 14 nuclear and 2 mitochondrial -encoded subunits. As an alpha subunit, ATP5F1A is contained within the catalytic F1 portion of the complex. [6] The nomenclature of the enzyme has a long history. The F1 fraction derives its name from the term "Fraction 1" and Fo (written as a subscript letter "o", not "zero") derives its name from being the binding fraction for oligomycin, a type of naturally-derived antibiotic that is able to inhibit the Fo unit of ATP synthase. [9] [10] The F1 particle is large and can be seen in the transmission electron microscope by negative staining. [11] These are particles of 9 nm diameter that pepper the inner mitochondrial membrane. They were originally called elementary particles and were thought to contain the entire respiratory apparatus of the mitochondrion, but, through a long series of experiments, Efraim Racker and his colleagues (who first isolated the F1 particle in 1961) were able to show that this particle is correlated with ATPase activity in uncoupled mitochondria and with the ATPase activity in submitochondrial particles created by exposing mitochondria to ultrasound. This ATPase activity was further associated with the creation of ATP by a long series of experiments in many laboratories.

Function

Mitochondrial membrane ATP synthase (F1Fo ATP synthase or Complex V) produces ATP from ADP in the presence of a proton gradient across the membrane which is generated by electron transport complexes of the respiratory chain. F-type ATPases consist of two structural domains, F1 - containing the extramembraneous catalytic core, and Fo - containing the membrane proton channel, linked together by a central stalk and a peripheral stalk. During catalysis, ATP synthesis in the catalytic domain of F1 is coupled via a rotary mechanism of the central stalk subunits to proton translocation. Subunits alpha and beta form the catalytic core in F1. Rotation of the central stalk against the surrounding alpha(3)beta(3) subunits leads to hydrolysis of ATP in three separate catalytic sites on the beta subunits. Subunit alpha does not bear the catalytic high-affinity ATP-binding sites. [12]

Clinical significance

Mutations affecting the ATP5F1A gene cause combined oxidative phosphorylation deficiency 22 (COXPD22), a mitochondrial disorder characterized by intrauterine growth retardation, microcephaly, hypotonia, pulmonary hypertension, failure to thrive, encephalopathy, and heart failure. Mutations on the ATP5F1A gene also cause mitochondrial complex V deficiency, nuclear 4 (MC5DN4), a mitochondrial disorder with heterogeneous clinical manifestations including dysmorphic features, psychomotor retardation, hypotonia, growth retardation, cardiomyopathy, enlarged liver, hypoplastic kidneys and elevated lactate levels in urine, plasma and cerebrospinal fluid. [13]

Resveratrol inhibition of the F1 catalytic core increases adenosine monophosphate (AMP) levels, thereby activating the AMP-activated protein kinase enzyme. [14]

Model organisms

Model organisms have been used in the study of ATP5F1A function. A conditional knockout mouse line, called Atp5a1tm1a(EUCOMM)Wtsi [21] [22] was generated as part of the International Knockout Mouse Consortium program — a high-throughput mutagenesis project to generate and distribute animal models of disease to interested scientists. [23] [24] [25]

Male and female animals underwent a standardized phenotypic screen to determine the effects of deletion. [19] [26] Twenty two tests were carried out on mutant mice and five significant abnormalities were observed. [19] No homozygous mutant embryos were identified during gestation, and therefore none survived until weaning. The remaining tests were carried out on heterozygous mutant adult mice and decreased body weight, lean body mass and hypoproteinemia was observed in female animals. [19]

Related Research Articles

<span class="mw-page-title-main">ATP synthase</span> Enzyme

ATP synthase is a protein that catalyzes the formation of the energy storage molecule adenosine triphosphate (ATP) using adenosine diphosphate (ADP) and inorganic phosphate (Pi). ATP synthase is a molecular machine. The overall reaction catalyzed by ATP synthase is:

<span class="mw-page-title-main">MT-ATP8</span> Mitochondrial protein-coding gene whose product is involved in ATP synthesis

MT-ATP8 is a mitochondrial gene with the full name 'mitochondrially encoded ATP synthase membrane subunit 8' that encodes a subunit of mitochondrial ATP synthase, ATP synthase Fo subunit 8. This subunit belongs to the Fo complex of the large, transmembrane F-type ATP synthase. This enzyme, which is also known as complex V, is responsible for the final step of oxidative phosphorylation in the electron transport chain. Specifically, one segment of ATP synthase allows positively charged ions, called protons, to flow across a specialized membrane inside mitochondria. Another segment of the enzyme uses the energy created by this proton flow to convert a molecule called adenosine diphosphate (ADP) to ATP. Subunit 8 differs in sequence between Metazoa, plants and Fungi.

<span class="mw-page-title-main">MT-ATP6</span> Mitochondrial protein-coding gene whose product is involved in ATP synthesis

MT-ATP6 is a mitochondrial gene with the full name 'mitochondrially encoded ATP synthase membrane subunit 6' that encodes the ATP synthase Fo subunit 6. This subunit belongs to the Fo complex of the large, transmembrane F-type ATP synthase. This enzyme, which is also known as complex V, is responsible for the final step of oxidative phosphorylation in the electron transport chain. Specifically, one segment of ATP synthase allows positively charged ions, called protons, to flow across a specialized membrane inside mitochondria. Another segment of the enzyme uses the energy created by this proton flow to convert a molecule called adenosine diphosphate (ADP) to ATP. Mutations in the MT-ATP6 gene have been found in approximately 10 to 20 percent of people with Leigh syndrome.

<span class="mw-page-title-main">ATP5B</span> Protein-coding gene in humans

ATP synthase F1 subunit beta, mitochondrial is an enzyme that in humans is encoded by the ATP5F1B gene.

<span class="mw-page-title-main">ATP5PF</span> Protein-coding gene in the species Homo sapiens

ATP synthase-coupling factor 6, mitochondrial is an enzyme subunit that in humans is encoded by the ATP5PF gene.

<span class="mw-page-title-main">ATP5G1</span> Protein-coding gene in the species Homo sapiens

The ATP5MC1 gene is one of three human paralogs that encode membrane subunit c of the mitochondrial ATP synthase.

<span class="mw-page-title-main">ATP5J2</span> Protein-coding gene in the species Homo sapiens

The ATP5MF gene encodes the ATP synthase subunit f, mitochondrial enzyme in humans.

<span class="mw-page-title-main">ATP synthase alpha/beta subunits</span>

The alpha and beta subunits are found in the F1, V1, and A1 complexes of F-, V- and A-ATPases, respectively, as well as flagellar (T3SS) ATPase and the termination factor Rho. The subunits make up a ring that contains the ATP-hydrolyzing catalytic core. The F-ATPases, V-ATPases and A-ATPases are composed of two linked complexes: the F1, V1 or A1 complex containsthat synthesizes/hydrolyses ATP, and the Fo, Vo or Ao complex that forms the membrane-spanning pore. The F-, V- and A-ATPases all contain rotary motors, one that drives proton translocation across the membrane and one that drives ATP synthesis/hydrolysis.

<span class="mw-page-title-main">ATP synthase delta/OSCP subunit</span> Subunit of bacterial and chloroplast F-ATPase/synthase

ATP synthase delta subunit is a subunit of bacterial and chloroplast F-ATPase/synthase. It is known as OSCP in mitochondrial ATPase.

<span class="mw-page-title-main">ATP5L</span> Protein-coding gene in the species Homo sapiens

ATP synthase subunit g, mitochondrial is an enzyme that in humans is encoded by the ATP5MG gene.

<span class="mw-page-title-main">ATP synthase gamma subunit</span>

Gamma subunit of ATP synthase F1 complex forms the central shaft that connects the Fo rotary motor to the F1 catalytic core. F-ATP synthases are composed of two linked complexes: the F1 ATPase complex is the catalytic core and is composed of 5 subunits, while the Fo ATPase complex is the membrane-embedded proton channel that is composed of at least 3 subunits (A-C), nine in mitochondria.

<span class="mw-page-title-main">ATP5C1</span> Protein-coding gene in the species Homo sapiens

The human ATP5F1C gene encodes the gamma subunit of an enzyme called mitochondrial ATP synthase.

<span class="mw-page-title-main">ATP5F1</span> Protein-coding gene in the species Homo sapiens

ATP synthase subunit b, mitochondrial is an enzyme that in humans is encoded by the ATP5PB gene.

<span class="mw-page-title-main">ATP5S</span> Protein-coding gene in the species Homo sapiens

ATP synthase subunit s, mitochondrial is an enzyme that in humans is encoded by the ATP5S gene.

<span class="mw-page-title-main">ATP5G2</span> Protein-coding gene in humans

The ATP5MC2 gene is one of three human paralogs that encode membrane subunit c of the mitochondrial ATP synthase.

<span class="mw-page-title-main">ATP5I</span> Protein-coding gene in the species Homo sapiens

ATP synthase subunit e, mitochondrial is an enzyme that in humans is encoded by the ATP5ME gene.

<span class="mw-page-title-main">ATP5H</span> Protein-coding gene in the species Homo sapiens

The human gene ATP5PD encodes subunit d of the peripheral stalk part of the enzyme mitochondrial ATP synthase.

<span class="mw-page-title-main">ATP5D</span> Protein-coding gene in the species Homo sapiens

ATP synthase subunit delta, mitochondrial, also known as ATP synthase F1 subunit delta or F-ATPase delta subunit is an enzyme that in humans is encoded by the ATP5F1D gene. This gene encodes a subunit of mitochondrial ATP synthase. Mitochondrial ATP synthase catalyzes ATP synthesis, utilizing an electrochemical gradient of protons across the inner membrane during oxidative phosphorylation.

<span class="mw-page-title-main">ATP5E</span> Protein-coding gene in the species Homo sapiens

ATP synthase F1 subunit epsilon, mitochondrial is an enzyme that in humans is encoded by the ATP5F1E gene. The protein encoded by ATP5F1E is a subunit of ATP synthase, also known as Complex V. Variations of this gene have been associated with mitochondrial complex V deficiency, nuclear 3 (MC5DN3) and Papillary Thyroid Cancer.

<span class="mw-page-title-main">ATP5G3</span> Protein-coding gene in the species Homo sapiens

The ATP5MC3 gene is one of three human paralogs that encode membrane subunit c of the mitochondrial ATP synthase.

References

  1. 1 2 3 GRCh38: Ensembl release 89: ENSG00000152234 - Ensembl, May 2017
  2. 1 2 3 GRCm38: Ensembl release 89: ENSMUSG00000025428 - Ensembl, May 2017
  3. "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. Kataoka H, Biswas C (July 1991). "Nucleotide sequence of a cDNA for the alpha subunit of human mitochondrial ATP synthase". Biochimica et Biophysica Acta (BBA) - Gene Structure and Expression. 1089 (3): 393–5. doi:10.1016/0167-4781(91)90183-m. PMID   1830491.
  6. 1 2 3 4 "Entrez Gene: ATP5F1A ATP synthase F1 subunit alpha".
  7. Zong NC, Li H, Li H, Lam MP, Jimenez RC, Kim CS, Deng N, Kim AK, Choi JH, Zelaya I, Liem D, Meyer D, Odeberg J, Fang C, Lu HJ, Xu T, Weiss J, Duan H, Uhlen M, Yates JR, Apweiler R, Ge J, Hermjakob H, Ping P (October 2013). "Integration of cardiac proteome biology and medicine by a specialized knowledgebase". Circulation Research. 113 (9): 1043–53. doi:10.1161/CIRCRESAHA.113.301151. PMC   4076475 . PMID   23965338.
  8. "ATP synthase subunit alpha, mitochondrial". Cardiac Organellar Protein Atlas Knowledgebase (COPaKB). Archived from the original on 2018-07-20. Retrieved 2018-07-18.
  9. Kagawa Y, Racker E (May 1966). "Partial resolution of the enzymes catalyzing oxidative phosphorylation. 8. Properties of a factor conferring oligomycin sensitivity on mitochondrial adenosine triphosphatase". The Journal of Biological Chemistry. 241 (10): 2461–6. doi: 10.1016/S0021-9258(18)96640-8 . PMID   4223640.
  10. Mccarty RE (November 1992). "A PLANT BIOCHEMIST'S VIEW OF H+-ATPases AND ATP SYNTHASES". The Journal of Experimental Biology. 172 (Pt 1): 431–441. doi:10.1242/jeb.172.1.431. PMID   9874753.
  11. Fernandez Moran H, Oda T, Blair PV, Green DE (July 1964). "A Macromolecular Repeating Unit Of Mitochondrial Structure and Function. Correlated Electron Microscopic and Biochemical Studies of Isolated Mitochondria and Submitochondrial Particles of Beef Heart Muscle". The Journal of Cell Biology. 22 (1): 63–100. doi:10.1083/jcb.22.1.63. PMC   2106494 . PMID   14195622.
  12. "ATP synthase subunit alpha, mitochondrial". UniProt. The UniProt Consortium.
  13. "ATP5F1A". NCBI Genetics Home Resource.
  14. Joshi T, Singh AK, Haratipour P, Farzaei MH (2019). "Targeting AMPK signaling pathway by natural products for treatment of diabetes mellitus and its complications". Journal of Cellular Physiology . 234 (10): 17212–17231. doi:10.1002/jcp.28528. PMID   30916407. S2CID   85533334.
  15. "Body weight data for Atp5a1". Wellcome Trust Sanger Institute.
  16. "DEXA data for Atp5a1". Wellcome Trust Sanger Institute.
  17. "Clinical chemistry data for Atp5a1". Wellcome Trust Sanger Institute.
  18. "Citrobacter infection data for Atp5a1". Wellcome Trust Sanger Institute.
  19. 1 2 3 4 Gerdin AK (2010). "The Sanger Mouse Genetics Programme: High throughput characterisation of knockout mice". Acta Ophthalmologica. 88: 925–7. doi:10.1111/j.1755-3768.2010.4142.x. S2CID   85911512.
  20. Mouse Resources Portal, Wellcome Trust Sanger Institute.
  21. "International Knockout Mouse Consortium".
  22. "Mouse Genome Informatics".
  23. Skarnes WC, Rosen B, West AP, Koutsourakis M, Bushell W, Iyer V, Mujica AO, Thomas M, Harrow J, Cox T, Jackson D, Severin J, Biggs P, Fu J, Nefedov M, de Jong PJ, Stewart AF, Bradley A (June 2011). "A conditional knockout resource for the genome-wide study of mouse gene function". Nature. 474 (7351): 337–42. doi:10.1038/nature10163. PMC   3572410 . PMID   21677750.
  24. Dolgin E (June 2011). "Mouse library set to be knockout". Nature. 474 (7351): 262–3. doi: 10.1038/474262a . PMID   21677718.
  25. Collins FS, Rossant J, Wurst W (January 2007). "A mouse for all reasons". Cell. 128 (1): 9–13. doi: 10.1016/j.cell.2006.12.018 . PMID   17218247.
  26. van der Weyden L, White JK, Adams DJ, Logan DW (June 2011). "The mouse genetics toolkit: revealing function and mechanism". Genome Biology. 12 (6): 224. doi: 10.1186/gb-2011-12-6-224 . PMC   3218837 . PMID   21722353.

Further reading

This article incorporates text from the United States National Library of Medicine, which is in the public domain.