Aaron Naber

Last updated
Aaron Naber
Aaron Naber Oberwolfach 2015.jpg
Born
Aaron Naber

November 16, 1982
Citizenship American
Occupation
  • mathematician
Parent
  • Gregory L. Naber, Debora R. Naber

Aaron Naber (born November 16, 1982) is an American mathematician. [1]

Contents

Education and career

Aaron Naber graduated in 2005 with a B.S. in mathematics from Pennsylvania State University. He received in 2009 his Ph.D. in mathematics from Princeton University. [2] His Ph.D. thesis (Ricci solitons and collapsed spaces) was supervised by Gang Tian. [3] At Massachusetts Institute of Technology (MIT), Naber was from 2009 to 2012 a Moore Instructor and from 2012 to 2013 an assistant professor. At Northwestern University he was from 2013 to 2015 an associate professor and was appointed in 2015 Kenneth F. Burgess Professor for Mathematics. [2] In 2024 he was appointed a permanent faculty member in the School of Mathematics of the Institute for Advanced Study. [4]

Research

Naber does research on nonlinear harmonic maps, minimal varifolds, general elliptic partial differential equations, geometric analysis, the calculus of variations, and differential geometry with applications in mathematical physics to Yang-Mills theories and Einstein manifolds. [5] In his doctoral dissertation, Naber extended the investigation from the three dimensions investigated by Perelman to manifolds having four or more dimensions (with bounded non-negative curvature) and investigated shrinking soliton solutions. [6] With Gang Tian, he investigated the geometric structure of collapsing n-dimensional Riemannian manifolds with uniformly bounded sectional curvature and in particular that in four and fewer dimensions a smooth orbifold structure results outside a finite number of points.

As a postdoctoral student Naber and Tobias Colding solved the constant dimension conjecture for lower Ricci curvature, which shows limits of manifolds with lower Ricci curvature have a well defined dimension. As a postdoc and later assistant professor at MIT, Naber and Jeff Cheeger introduced the notion of quantitative stratification to Lower Ricci curvature. The estimates and techniques caught on in a wide variety of nonlinear equations, including nonlinear harmonic maps, minimal surfaces, mean curvature flow, and Yang Mills.

During his time at Northwestern, Naber and Cheeger proved the codimension four conjecture, showing in particular that Einstein manifolds have controlled singular sets. This work was extended with Wenshuai Jiang in order to prove sharp rectifiability of the singular sets. During this time Naber gave a characterization of Einstein manifolds, or more generally spaces with bounded Ricci curvature, through the analysis of path space of the manifold. This work was generalized with Robert Haslhofer to give a full generation of the Bakry-Emery-Ledoux estimates for martingales on path space. Near the end of his time at Northwestern, Elia Brue, Naber and Daniele Semola gave a counterexample to the Milnor conjecture, showing the existence of spaces with nonnegative Ricci curvature and infinitely generated fundamental group.

Naber and Daniele Valtorta have also done a series of works on nonlinear harmonic maps. Together they developed a stratification theory for nonlinear harmonic maps, which broadly extended the results of Schoen/Uhlenbeck from Hausdorff dimension estimates to finite measure and rectifiable structure for singular sets. The techniques were general and generalized by many others, applying to many situations in which the dimension reduction ideas of Federer had worked, including minimal surfaces, Yang-Mills, Q-valued harmonic maps. Valtorta and Naber have also resolved the Energy Identity conjecture, first for Yang-Mills and later for nonlinear harmonic maps using very different sets of ideas.

Awards and honors

In 2014 Naber was awarded a two-year Sloan Research Fellowship and was an invited speaker with talk The structure and meaning of Ricci curvature at the International Congress of Mathematicians in Seoul. [2] In 2018 he received the New Horizon in Mathematics Prize [7] and was elected a Fellow of the American Mathematical Society. [8] In 2023 Naber was awarded a Simons Investigator award. In 2023 the Institut de Mathématiques de Toulouse awarded him the Fermat Prize. [9] In 2024 Naber was elected a Member of the National Academy of Sciences. [10]

Selected publications

Related Research Articles

In the mathematical field of geometric topology, the Poincaré conjecture is a theorem about the characterization of the 3-sphere, which is the hypersphere that bounds the unit ball in four-dimensional space.

Riemannian geometry is the branch of differential geometry that studies Riemannian manifolds, defined as smooth manifolds with a Riemannian metric. This gives, in particular, local notions of angle, length of curves, surface area and volume. From those, some other global quantities can be derived by integrating local contributions.

<span class="mw-page-title-main">Grigori Perelman</span> Russian mathematician (born 1966)

Grigori Yakovlevich Perelman is a Russian mathematician and geometer who is known for his contributions to the fields of geometric analysis, Riemannian geometry, and geometric topology. In 2005, Perelman resigned from his research post in Steklov Institute of Mathematics and in 2006 stated that he had quit professional mathematics, owing to feeling disappointed over the ethical standards in the field. He lives in seclusion in Saint Petersburg and has declined requests for interviews since 2006.

<span class="mw-page-title-main">Ricci flow</span> Partial differential equation

In the mathematical fields of differential geometry and geometric analysis, the Ricci flow, sometimes also referred to as Hamilton's Ricci flow, is a certain partial differential equation for a Riemannian metric. It is often said to be analogous to the diffusion of heat and the heat equation, due to formal similarities in the mathematical structure of the equation. However, it is nonlinear and exhibits many phenomena not present in the study of the heat equation.

<span class="mw-page-title-main">Shing-Tung Yau</span> Chinese mathematician

Shing-Tung Yau is a Chinese-American mathematician. He is the director of the Yau Mathematical Sciences Center at Tsinghua University and Professor Emeritus at Harvard University. Until 2022, Yau was the William Caspar Graustein Professor of Mathematics at Harvard, at which point he moved to Tsinghua.

In mathematics and especially differential geometry, a Kähler manifold is a manifold with three mutually compatible structures: a complex structure, a Riemannian structure, and a symplectic structure. The concept was first studied by Jan Arnoldus Schouten and David van Dantzig in 1930, and then introduced by Erich Kähler in 1933. The terminology has been fixed by André Weil. Kähler geometry refers to the study of Kähler manifolds, their geometry and topology, as well as the study of structures and constructions that can be performed on Kähler manifolds, such as the existence of special connections like Hermitian Yang–Mills connections, or special metrics such as Kähler–Einstein metrics.

In the mathematical field of differential geometry, Ricci-flatness is a condition on the curvature of a Riemannian manifold. Ricci-flat manifolds are a special kind of Einstein manifold. In theoretical physics, Ricci-flat Lorentzian manifolds are of fundamental interest, as they are the solutions of Einstein's field equations in a vacuum with vanishing cosmological constant.

<span class="mw-page-title-main">Richard S. Hamilton</span> American mathematician (1943–2024)

Richard Streit Hamilton was an American mathematician who served as the Davies Professor of Mathematics at Columbia University.

<span class="mw-page-title-main">Mikhael Gromov (mathematician)</span> Russian-French mathematician

Mikhael Leonidovich Gromov is a Russian-French mathematician known for his work in geometry, analysis and group theory. He is a permanent member of Institut des Hautes Études Scientifiques in France and a professor of mathematics at New York University.

In the mathematical field of differential geometry, there are various splitting theorems on when a pseudo-Riemannian manifold can be given as a metric product. The best-known is the Cheeger–Gromoll splitting theorem for Riemannian manifolds, although there has also been research into splitting of Lorentzian manifolds.

The Bôcher Memorial Prize was founded by the American Mathematical Society in 1923 in memory of Maxime Bôcher with an initial endowment of $1,450. It is awarded every three years for a notable research work in analysis that has appeared during the past six years. The work must be published in a recognized, peer-reviewed venue. The current award is $5,000.

<span class="mw-page-title-main">Richard Schoen</span> American mathematician

Richard Melvin Schoen is an American mathematician known for his work in differential geometry and geometric analysis. He is best known for the resolution of the Yamabe problem in 1984 and his works on harmonic maps.

<span class="mw-page-title-main">Geometric analysis</span> Field of higher mathematics

Geometric analysis is a mathematical discipline where tools from differential equations, especially elliptic partial differential equations (PDEs), are used to establish new results in differential geometry and differential topology. The use of linear elliptic PDEs dates at least as far back as Hodge theory. More recently, it refers largely to the use of nonlinear partial differential equations to study geometric and topological properties of spaces, such as submanifolds of Euclidean space, Riemannian manifolds, and symplectic manifolds. This approach dates back to the work by Tibor Radó and Jesse Douglas on minimal surfaces, John Forbes Nash Jr. on isometric embeddings of Riemannian manifolds into Euclidean space, work by Louis Nirenberg on the Minkowski problem and the Weyl problem, and work by Aleksandr Danilovich Aleksandrov and Aleksei Pogorelov on convex hypersurfaces. In the 1980s fundamental contributions by Karen Uhlenbeck, Clifford Taubes, Shing-Tung Yau, Richard Schoen, and Richard Hamilton launched a particularly exciting and productive era of geometric analysis that continues to this day. A celebrated achievement was the solution to the Poincaré conjecture by Grigori Perelman, completing a program initiated and largely carried out by Richard Hamilton.

<span class="mw-page-title-main">Tian Gang</span> Chinese mathematician (born 1958)

Tian Gang is a Chinese mathematician. He is a professor of mathematics at Peking University and Higgins Professor Emeritus at Princeton University. He is known for contributions to the mathematical fields of Kähler geometry, Gromov-Witten theory, and geometric analysis.

The Oswald Veblen Prize in Geometry is an award granted by the American Mathematical Society for notable research in geometry or topology. It was funded in 1961 in memory of Oswald Veblen and first issued in 1964. The Veblen Prize is now worth US$5000, and is awarded every three years.

Huai-Dong Cao is a Chinese–American mathematician. He is the A. Everett Pitcher Professor of Mathematics at Lehigh University. He is known for his research contributions to the Ricci flow, a topic in the field of geometric analysis.

In mathematics and physics, a nonlinear partial differential equation is a partial differential equation with nonlinear terms. They describe many different physical systems, ranging from gravitation to fluid dynamics, and have been used in mathematics to solve problems such as the Poincaré conjecture and the Calabi conjecture. They are difficult to study: almost no general techniques exist that work for all such equations, and usually each individual equation has to be studied as a separate problem.

The Geometry Festival is an annual mathematics conference held in the United States.

Tobias Holck Colding is a Danish mathematician working on geometric analysis, and low-dimensional topology. He is the great grandchild of Ludwig August Colding.

In 1968 John Milnor conjectured that the fundamental group of a complete manifold is finitely generated if its Ricci curvature stays nonnegative. In an oversimplified interpretation, such a manifold has a finite number of "holes". A version for almost-flat manifolds holds from work of Gromov.

References

  1. "Aaron Naber - Scholars | Institute for Advanced Study". 17 April 2024.
  2. 1 2 3 "C.V. for Aaron Naber" (PDF). Department of Mathematics, Northwestern University.
  3. Aaron Naber at the Mathematics Genealogy Project
  4. "Three World-Leading Mathematicians Join IAS Faculty - Press Release | Institute for Advanced Study". July 2024.
  5. "Homepage of Aaron Naber". Mathematics Department, Northwestern University.
  6. He published partial results before his 2009 doctoral dissertation, Noncompact Shrinking 4-Solitons with Nonnegative Curvature, Arxiv 2007
  7. "Aaron Naber | 2018 New Horizons in Mathematics Prize". breakthroughprize.org.
  8. "List of Fellows (sorted by last name)". American Mathematical Society.
  9. Fermat Prix 2023
  10. "Nine mathematicians elected to National Academy of Sciences". News from the AMS, American Mathematical Society (ams.oeg). April 30, 2024.