Agile tooling

Last updated

Agile tooling is the design and fabrication of manufacturing related-tools such as dies, molds, patterns, jigs and fixtures in a configuration that aims to maximise the tools' performance, minimise manufacturing time and cost, and avoid delay in prototyping. [1] A fully functional agile tooling laboratory consists of CNC milling, turning and routing equipment. It can also include additive manufacturing platforms (such as fused filament fabrication, selective laser sintering, Stereolithography, and direct metal laser sintering), hydroforming, vacuum forming, die casting, stamping, injection molding and welding equipment. [2]

Contents

Agile tooling is similar to rapid tooling, which uses additive manufacturing to make tools or tooling quickly, either directly by making parts that serve as the actual tools or tooling components, such as mold inserts; or indirectly by producing patterns that are in turn used in a secondary process to produce the actual tools. Another similar technique is prototype tooling, where molds, dies and other devices are used to produce prototypes. Rapid manufacturing, and specifically rapid tooling technologies, are earlier in their development than rapid prototyping (RP) technologies, and are often extensions of RP.

The aim of all toolmaking is to catch design errors early in the design process; improve product design better products, reduce product cost, and reduce time to market.

Users

Hundreds of universities and research centers [ example needed ] around the globe are investing in additive manufacturing equipment in order to be positioned to make prototypes and tactile representations of real parts. Few have fully committed the concept of using additive manufacturing (AM) to create manufacturing tools (fixturing, clamps, molds, dies, patterns, negatives, etc.). AM experts[ who? ] seem to agree that tooling is a large, namely untapped market. Deloitte University Press estimated that in 2012 alone, the AM Tooling market $1.2 Billion. At that point in the development cycle of AM Tooling, much of the work was performed under the guise of “let’s try it and see what happens”.

Industry applications

Interlaken hydroform and conventional press Ram Press at Ohio State U.jpg
Interlaken hydroform and conventional press
Buhler die-casting and squeeze casting press Buhler 2.jpg
Buhler die-casting and squeeze casting press

Additive manufacturing, starting with today's infancy period, requires manufacturing firms to be flexible, ever-improving users of all available technologies to remain competitive. Advocates[ who? ] of additive manufacturing also predict that this arc of technological development will counter globalization, as end users will do much of their own manufacturing rather than engage in trade to buy products from other people and corporations. [3] The real integration of the newer additive technologies into commercial production, however, is more a matter of complementing traditional subtractive methods rather than displacing them entirely. [4]

Automotive – approaching niche vehicle markets (making less than 100, 000 vehicles), rather than high production volume

Aircraft – the U.S. aircraft industry operates in an environment where production volumes are relatively low and resulting product costs are relatively high. Agile tooling can be applied in the early design stage of the development cycle to minimize the high cost of redesign.

Medical – cast tooling would benefit a great deal from agile tooling. However, the cost for the tooling may still be significantly greater than the cost of a casting piece, with high lead times. Since only several dozen or several hundred metal parts are needed, the challenge for mass production is still prevalent. A balance between these four areas – quantity, design, material, and speed are key to designing and producing a fully functional product.

See also

Related Research Articles

<span class="mw-page-title-main">Selective laser sintering</span> 3D printing technique

Selective laser sintering (SLS) is an additive manufacturing (AM) technique that uses a laser as the power and heat source to sinter powdered material, aiming the laser automatically at points in space defined by a 3D model, binding the material together to create a solid structure. It is similar to selective laser melting; the two are instantiations of the same concept but differ in technical details. SLS is a relatively new technology that so far has mainly been used for rapid prototyping and for low-volume production of component parts. Production roles are expanding as the commercialization of AM technology improves.

<span class="mw-page-title-main">Fab lab</span> Small-scale workshop for digital fabrication

A fab lab is a small-scale workshop offering (personal) digital fabrication.

<span class="mw-page-title-main">3D printing</span> Additive process used to make a three-dimensional object

3D printing or additive manufacturing is the construction of a three-dimensional object from a CAD model or a digital 3D model. It can be done in a variety of processes in which material is deposited, joined or solidified under computer control, with the material being added together, typically layer by layer.

<span class="mw-page-title-main">Design for manufacturability</span> Designing products to facilitate manufacturing

Design for manufacturability is the general engineering practice of designing products in such a way that they are easy to manufacture. The concept exists in almost all engineering disciplines, but the implementation differs widely depending on the manufacturing technology. DFM describes the process of designing or engineering a product in order to facilitate the manufacturing process in order to reduce its manufacturing costs. DFM will allow potential problems to be fixed in the design phase which is the least expensive place to address them. Other factors may affect the manufacturability such as the type of raw material, the form of the raw material, dimensional tolerances, and secondary processing such as finishing.

<span class="mw-page-title-main">3D Systems</span> American 3D printing company

3D Systems Corporation is an American company based in Rock Hill, South Carolina, that engineers, manufactures, and sells 3D printers, 3D printing materials, 3D printed parts, and application engineering services. The company creates product concept models, precision and functional prototypes, master patterns for tooling, as well as production parts for direct digital manufacturing. It uses proprietary processes to fabricate physical objects using input from computer-aided design and manufacturing software, or 3D scanning and 3D sculpting devices.

<span class="mw-page-title-main">Outline of manufacturing</span> Overview of and topical guide to manufacturing

The following outline is provided as an overview of and topical guide to manufacturing:

A Model maker is a professional Craftsperson who creates a three-dimensional representation of a design or concept. Most products in use and in development today first take form as a model. This "model" may be an exacting duplicate (prototype) of the future design or a simple mock-up of the general shape or concept. Many prototype models are used for testing physical properties of the design, others for usability and marketing studies.

Heinz Joseph Gerber was an American inventor and businessman. An Austrian-born Jewish Holocaust survivor who immigrated in 1940, he pioneered computer-automated manufacturing systems for an array of industries. Described as the "Thomas Edison of manufacturing", he was one of the first to recognize and develop the productivity-enhancing potential for computer automation in skill-intensive industrial sectors.

<span class="mw-page-title-main">Rapid prototyping</span> Group of techniques to quickly construct physical objects

Rapid prototyping is a group of techniques used to quickly fabricate a scale model of a physical part or assembly using three-dimensional computer aided design (CAD) data. Construction of the part or assembly is usually done using 3D printing or "additive layer manufacturing" technology.

<span class="mw-page-title-main">Selective laser melting</span> 3D printing technique

Selective laser melting (SLM) is one of many proprietary names for a metal additive manufacturing (AM) technology that uses a bed of powder with a source of heat to create metal parts. Also known as direct metal laser sintering (DMLS), the ASTM standard term is powder bed fusion (PBF). PBF is a rapid prototyping, 3D printing, or additive manufacturing technique designed to use a high power-density laser to melt and fuse metallic powders together.

Solid Concepts, Inc. is a custom manufacturing company engaged in engineering, manufacturing, production, and prototyping. The company is headquartered in Valencia, California, in the Los Angeles County area, with six other facilities located around the United States. Solid Concepts is an additive manufacturing service provider as well as a major manufacturer of business products, aerospace, unmanned systems, medical equipment and devices, foundry cast patterns, industrial equipment and design, and transportation parts.

Distributed manufacturing also known as distributed production, cloud producing, distributed digital manufacturing, and local manufacturing is a form of decentralized manufacturing practiced by enterprises using a network of geographically dispersed manufacturing facilities that are coordinated using information technology. It can also refer to local manufacture via the historic cottage industry model, or manufacturing that takes place in the homes of consumers.

Cast urethanes are similar to injection molding. During the process of injection molding, a hard tool is created. The hard tool, made of an A side and a B side, forms a void within and that void is injected with plastics ranging in material property, durability, and consistency. Plastic cups, dishware, and toys are most commonly made using the process of injection molding because they are common consumer items that need to be produced on a mass scale, and injection molding is designed for mass production.

<span class="mw-page-title-main">Conformal cooling channel</span>

Conformal cooling channel is a cooling passageway which follows the shape or profile of the mould core or cavity to perform rapid uniform cooling process for injection moulding or blow moulding processes.

Digital manufacturing is an integrated approach to manufacturing that is centered around a computer system. The transition to digital manufacturing has become more popular with the rise in the quantity and quality of computer systems in manufacturing plants. As more automated tools have become used in manufacturing plants it has become necessary to model, simulate, and analyze all of the machines, tooling, and input materials in order to optimize the manufacturing process. Overall, digital manufacturing can be seen sharing the same goals as computer-integrated manufacturing (CIM), flexible manufacturing, lean manufacturing, and design for manufacturability (DFM). The main difference is that digital manufacturing was evolved for use in the computerized world.

Three-dimensional (3D) microfabrication refers to manufacturing techniques that involve the layering of materials to produce a three-dimensional structure at a microscopic scale. These structures are usually on the scale of micrometers and are popular in microelectronics and microelectromechanical systems.

<span class="mw-page-title-main">Applications of 3D printing</span>

In recent years, 3D printing has developed significantly and can now perform crucial roles in many applications, with the most common applications being manufacturing, medicine, architecture, custom art and design, and can vary from fully functional to purely aesthetic applications.

<span class="mw-page-title-main">3D printing processes</span> List of 3D printing processes

A variety of processes, equipment, and materials are used in the production of a three-dimensional object via additive manufacturing. 3D printing is also known as additive manufacturing, because the numerous available 3D printing process tend to be additive in nature, with a few key differences in the technologies and the materials used in this process.

<span class="mw-page-title-main">Ian Gibson (professor)</span>

Ian Gibson is a Professor of Design Engineering at the University of Twente. Gibson was selected as the scientific director of Fraunhofer Project Center at the University of Twente and is a recipient of lifetime achievement award, the Freeform and Additive Manufacturing Award. His main areas of research are in at the additive manufacturing, multi-material systems, micro-RP, Rapid Prototyping, Medical Modelling and tissue engineering.

Material extrusion-based additive manufacturing (EAM) represents one of the seven categories of 3d printing processes, defined by the ISO international standard 17296-2. While it is mostly used for plastics, under the name of FDM or FFF, it can also be used for metals and ceramics. In this AM process category, the feedstock materials are mixtures of a polymeric binder and a fine grain solid powder of metal or ceramic materials. Similar type of feedstock is also used in the Metal Injection Molding (MIM) and in the Ceramic Injection Molding (CIM) processes. The extruder pushes the material towards a heated nozzle thanks to

References

  1. "All about agile tooling". insights.globalspec.com. Retrieved 2020-01-20.
  2. "Agile Tooling". Archived from the original on 2016-12-15. Retrieved 2016-10-18.
  3. Jane Bird (2012-08-08). "Exploring the 3D printing opportunity". The Financial Times . Retrieved 2012-08-30.
  4. Albert, Mark (17 January 2011). "Subtractive plus additive equals more than ( – + + = > )". Modern Machine Shop. 83 (9). Cincinnati, Ohio, USA: Gardner Publications Inc.: 14.