Alloxydim

Last updated

Contents

Alloxydim
Alloxydim Structural Formula V1.svg
Names
Preferred IUPAC name
Methyl 2-hydroxy-6,6-dimethyl-4-oxo-3-[(E)-N-prop-2-enoxy-C-propylcarbonimidoyl]cyclohex-2-ene-1-carboxylate
Other names
  • Carbodimedon
  • Zizalon
Identifiers
3D model (JSmol)
ChEBI
ChEMBL
ChemSpider
ECHA InfoCard 100.054.284 OOjs UI icon edit-ltr-progressive.svg
EC Number
  • 259-732-6
PubChem CID
UNII
  • InChI=1S/C17H25NO5/c1-6-8-11(18-23-9-7-2)13-12(19)10-17(3,4)14(15(13)20)16(21)22-5/h7,14,19H,2,6,8-10H2,1,3-5H3/b18-11+
    Key: ORFLOUYIJLPLPL-WOJGMQOQSA-N
  • CCC/C(=N\OCC=C)/C1=C(C(C(CC1=O)(C)C)C(=O)OC)O
Properties
C17H25NO5
Molar mass 323.389 g·mol−1
Hazards
Lethal dose or concentration (LD, LC):
  • 2260 mg/kg (rat, oral) [1]
  • >4300 mg/m3/4H (rat, inhalation) [1]
  • >5 g/kg (rat, skin) [1]
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).

Alloxydim is a chemical compound. Its formula is C17H25NO5. A member of the cyclohexenones, a methyl ester, and an ether, alloxydim is a post-emergence herbicide. [2] Its sodium salt is a hygroscopic, water-soluble colorless solid. [3]

Synthesis

Alloxydim may be produced by a multi-step reaction from mesityl oxide with dimethyl malonate, butyryl chloride, and ethoxyamine. [4]

Uses

Alloxydim is a grass herbicide that acts by inhibiting acetyl-CoA carboxylase. [2] It was developed by Nippon Soda in 1976 [5] [6] and used from 1978 to 1992 in Germany. [7]

See also

Related Research Articles

<span class="mw-page-title-main">Pesticide</span> Substance used to destroy pests

Pesticides are substances that are used to control pests. They include herbicides, insecticides, nematicides, fungicides, and many others. The most common of these are herbicides, which account for approximately 50% of all pesticide use globally. Most pesticides are used as plant protection products, which in general protect plants from weeds, fungi, or insects. In general, a pesticide is a chemical or biological agent that deters, incapacitates, kills, or otherwise discourages pests. Target pests can include insects, plant pathogens, weeds, molluscs, birds, mammals, fish, nematodes (roundworms), and microbes that destroy property, cause nuisance, or spread disease, or are disease vectors. Along with these benefits, pesticides also have drawbacks, such as potential toxicity to humans and other species.

<span class="mw-page-title-main">Herbicide</span> Type of chemical used to kill unwanted plants

Herbicides, also commonly known as weed killers, are substances used to control undesired plants, also known as weeds. Selective herbicides control specific weed species while leaving the desired crop relatively unharmed, while non-selective herbicides kill plants indiscriminately. The combined effects of herbicides, nitrogen fertilizer, and improved cultivars has increased yields of major crops by three to six times from 1900 to 2000.

<span class="mw-page-title-main">Glyphosate</span> Systemic herbicide and crop desiccant

Glyphosate is a broad-spectrum systemic herbicide and crop desiccant. It is an organophosphorus compound, specifically a phosphonate, which acts by inhibiting the plant enzyme 5-enolpyruvylshikimate-3-phosphate synthase (EPSP). Glyphosate-based herbicides are used to kill weeds, especially annual broadleaf weeds and grasses that compete with crops. Its herbicidal effectiveness was discovered by Monsanto chemist John E. Franz in 1970. Monsanto brought it to market for agricultural use in 1974 under the trade name Roundup. Monsanto's last commercially relevant United States patent expired in 2000.

<span class="mw-page-title-main">Quinoline</span> Chemical compound

Quinoline is a heterocyclic aromatic organic compound with the chemical formula C9H7N. It is a colorless hygroscopic liquid with a strong odor. Aged samples, especially if exposed to light, become yellow and later brown. Quinoline is only slightly soluble in cold water but dissolves readily in hot water and most organic solvents. Quinoline itself has few applications, but many of its derivatives are useful in diverse applications. A prominent example is quinine, an alkaloid found in plants. Over 200 biologically active quinoline and quinazoline alkaloids are identified. 4-Hydroxy-2-alkylquinolines (HAQs) are involved in antibiotic resistance.

<span class="mw-page-title-main">Organophosphate</span> Organic compounds with the structure O=P(OR)3

In organic chemistry, organophosphates are a class of organophosphorus compounds with the general structure O=P(OR)3, a central phosphate molecule with alkyl or aromatic substituents. They can be considered as esters of phosphoric acid. Organophosphates are best known for their use as pesticides.

<span class="mw-page-title-main">Paraquat</span> Chemical compound used as an herbicide

Paraquat (trivial name; ), or N,N′-dimethyl-4,4′-bipyridinium dichloride (systematic name), also known as methyl viologen, is a toxic organic compound with the chemical formula [(C6H7N)2]Cl2. It is classified as a viologen, a family of redox-active heterocycles of similar structure. This salt is one of the most widely used herbicides worldwide. It is quick-acting and non-selective, killing green plant tissue on contact.

<span class="mw-page-title-main">Cacodylic acid</span> Chemical compound

Cacodylic acid is an organoarsenic compound with the formula (CH3)2AsO2H. With the formula R2As(O)OH, it is the simplest of the arsinic acids. It is a colorless solid that is soluble in water.

<span class="mw-page-title-main">Diquat</span> Chemical compound

Diquat is the ISO common name for an organic dication that, as a salt with counterions such as bromide or chloride is used as a contact herbicide that produces desiccation and defoliation. Diquat is no longer approved for use in the European Union, although its registration in many other countries including the USA is still valid.

<span class="mw-page-title-main">Sulfentrazone</span> Chemical compound

Sulfentrazone is the ISO common name for an organic compound used as a broad-spectrum herbicide. It acts by inhibiting the enzyme protoporphyrinogen oxidase. It was first marketed in the US in 1997 by FMC Corporation with the brand name Authority.

<span class="mw-page-title-main">Trifluralin</span> Weed control herbicide

Trifluralin is a common pre-emergent selective herbicide, a dinitroaniline. With about 14 million pounds (6,400 t) used in the United States in 2001, and 3–7 million pounds (1,400–3,200 t) in 2012, it is one of the most widely used herbicides. Trifluralin is also used in Australia, and New Zealand, previously in the EU. Introduced in 1964, Trifluralin was the first organofluorine compound used as an agrochemical.

<span class="mw-page-title-main">Mesotrione</span> Chemical compound used as an herbicide

Mesotrione is a selective herbicide used mainly in maize crops. It is a synthetic compound inspired by the natural substance leptospermone found in the bottlebrush tree Callistemon citrinus. It inhibits the enzyme 4-hydroxyphenylpyruvate dioxygenase (HPPD) and is sold under brand names including Callisto and Tenacity. It was first marketed by Syngenta in 2001.

<span class="mw-page-title-main">Acifluorfen</span> Chemical compound

Acifluorfen is the ISO common name for an organic compound used as an herbicide. It acts by inhibiting the enzyme protoporphyrinogen oxidase which is necessary for chlorophyll synthesis. Soybeans naturally have a high tolerance to acifluorfen and its salts, via metabolic disposal by glutathione S-transferase. It is effective against broadleaf weeds and grasses and is used agriculturally on fields growing soybeans, peanuts, peas, and rice.

4-Hydroxyphenylpyruvate dioxygenase (HPPD) inhibitors are a class of herbicides that prevent growth in plants by blocking 4-Hydroxyphenylpyruvate dioxygenase, an enzyme in plants that breaks down the amino acid tyrosine into molecules that are then used by plants to create other molecules that plants need. This process of breakdown, or catabolism, and making new molecules from the results, or biosynthesis, is something all living things do. HPPD inhibitors were first brought to market in 1980, although their mechanism of action was not understood until the late 1990s. They were originally used primarily in Japan in rice production, but since the late 1990s have been used in Europe and North America for corn, soybeans, and cereals, and since the 2000s have become more important as weeds have become resistant to glyphosate and other herbicides. Genetically modified crops are under development that include resistance to HPPD inhibitors. There is a pharmaceutical drug on the market, nitisinone, that was originally under development as an herbicide as a member of this class and is used to treat an orphan disease, type I tyrosinemia.

<span class="mw-page-title-main">Imazaquin</span> Chemical compound

Imazaquin is an imidazolinone herbicide, so named because it contains an imidazolinone core. This organic compound is used to control a broad spectrum of weed species. It is a colorless or white solid, although commercial samples can appear brown or tan.

<span class="mw-page-title-main">Bifenox</span> Chemical compound used as an herbicide

Bifenox is the ISO common name for an organic compound used as an herbicide. It acts by inhibiting the enzyme protoporphyrinogen oxidase which is necessary for chlorophyll synthesis.

Early twenty-first century pesticide research has focused on developing molecules that combine low use rates and that are more selective, safer, resistance-breaking and cost-effective. Obstacles include increasing pesticide resistance and an increasingly stringent regulatory environment.

<span class="mw-page-title-main">Fomesafen</span> PPOi herbicide

Fomesafen is the ISO common name for an organic compound used as an herbicide. It acts by inhibiting the enzyme protoporphyrinogen oxidase (PPO) which is necessary for chlorophyll synthesis. Soybeans naturally have a high tolerance to fomesafen, via metabolic disposal by glutathione S-transferase. As a result, soy is the most common crop treated with fomesafen, followed by other beans and a few other crop types. It is not safe for maize/corn or other Poaceae.

<span class="mw-page-title-main">Fluazifop</span> ACCase herbicide, fop, anti-grass

Fluazifop is the common name used by the ISO for an organic compound that is used as a selective herbicide. The active ingredient is the 2R enantiomer at its chiral centre and this material is known as fluazifop-P when used in that form. More commonly, it is sold as its butyl ester, fluazifop-P butyl with the brand name Fusilade.

<span class="mw-page-title-main">Aclonifen</span> Chemical compound

Aclonifen is a diphenyl ether herbicide which has been used in agriculture since the 1980s. Its mode of action has been uncertain, with evidence suggesting it might interfere with carotenoid biosynthesis or inhibit the enzyme protoporphyrinogen oxidase (PPO). Both mechanisms could result in the observed whole-plant effect of bleaching and the compound includes chemical features that are known to result in PPO effects, as seen with acifluorfen, for example. In 2020, further research revealed that aclonifen has a different and novel mode of action, targeting solanesyl diphosphate synthase which would also cause bleaching.

<span class="mw-page-title-main">Butamifos</span> Chemical compound

Butamifos is an herbicide that is used to control weeds.

References

  1. 1 2 3 Worthing CR, Hance RJ (1991). The Pesticide Manual. Vol. 9. British Crop Protection Council. p. 21. ISBN   978-0-948404-42-9.
  2. 1 2 Alloxydim in the Pesticide Properties DataBase (PPDB), accessed on 2024-11-30.
  3. Metabolic Pathways of Agrochemicals: Part 1: Herbicides and Plant Growth Regulators. Royal Society of Chemistry. 2007. p. 848. ISBN   978-1-84755-138-2.
  4. Unger TA (1996). Pesticide Synthesis Handbook. William Andrew. p. 145. ISBN   978-0-8155-1853-2.
  5. Li J, Li X, Liu X, Ma J (2009). "Synthesis of O-benzyl oximes by combination of phase transfer catalysis and ultrasound irradiation". Frontiers of Chemistry in China. 4 (1): 58–62. doi:10.1007/s11458-009-0002-2.
  6. Schirmer PU (2012). Modern Crop Protection Compounds: Herbicides. John Wiley & Sons. p. 455. ISBN   978-3-527-32965-6.
  7. Berichte zu Pflanzenschutzmitteln 2009: Wirkstoffe in Pflanzenschutzmitteln; Zulassungshistorie und Regelungen der Pflanzenschutz-Anwendungsverordnung (in German). Springer-Verlag. 2010. p. 8. ISBN   978-3-0348-0029-7.