Alpine-steppe | |
---|---|
Ecology | |
Biome | Montane grasslands and shrublands |
Geography | |
Climate type | Arid |
The Alpine-steppe is a high altitude natural alpine grassland, which is a part of the Montane grasslands and shrublands biome.
Alpine-steppes are unique ecosystems found throughout the world, especially in Asia, where they make up 38.9% of the total Tibetan plateau grassland's area. [1]
Alpine grasslands, like the Alpine-steppe, are characterized by their intense radiation, with direct solar radiation periods averaging 2916 hours annually. [2] The average temperature in this ecosystem is very low. For example, they may experience temperatures around −10 °C in winter, and 10 °C in summer. [2] Winters also tend to be long and cold, and summers are mild and short. [3] This ecosystem also experiences year-long frost, with no reported frost-free season. [2]
The annual rates of precipitation in Alpine-steppes are very low, with mean ranges falling anywhere between 280 and 300 mm. [3] In addition, upwards to 80% of this falls between the months of May and September, causing the climate to be arid or semi-arid, making the environment much harsher for plant and livestock life. [2]
Vegetation in the alpine steppe is very vulnerable to climate change. Average air temperature has been increasing by approximately 0.3 degrees Celsius every ten years since the 1960s. This is three times the global average, indicating the sensitivity of this area. [4] Studies have been done that show that the spread of vegetation has changed dramatically since the Holocene period. The Tibetan Plateau is composed of three main regions, based on yearly precipitation levels and types of vegetation, namely the alpine meadow, alpine steppe, and the alpine desert-steppe. Since the Holocene, studies of fossil pollen records have shown that the alpine meadow has extended into areas that were previously alpine steppe as precipitation increased during that period. [5] There is a unimodal pattern across precipitation and vegetation rain use efficiency (RUE), with an increasing trend in Alpine-steppe regions. [6] RUE is lower here compared to the alpine meadow because of differences in species richness, soil texture, and soil carbon content. [6]
Changes in vegetation have been used recently as an indicator of grassland degradation in the Tibetan Plateau, along with land desertification and decreased overall productivity. Vegetation shifts from non-poisonous to poisonous plants seem to correlate with increased land degradation. Plants defined as poisonous in the alpine grasslands area include species such as locoweed, [2] which is known to be very invasive. Not only are poisonous plants an indicator of decline, they result in increased mortality of grazing animals. This invasion of poisonous species is spread across all regions of the Tibetan Plateau, but the alpine steppe is the most affected area. [2]
The Tibetan Plateau is an extremely important area for livestock farming, and historically overgrazing has been as issue with regard to the sustainability of the vegetation in the area. Measures have been taken to regulate the use of these grasslands, including the implementation of protected or ‘fenced areas’. [2] While these measures are certainly a step in the right direction as far as sustainability legislation, they have not been shown to have a very strong effect on the above ground net primary productivity (ANPP). [4]
Based on studies done in the alpine steppe region of the Tibetan Plateau, different soil nutrients have differential effects on the nutrient composition and uptake of plants in the area. Soil phosphorus seems to have a much more significant impact on the nitrogen:phosphorus ratio in plants than soil nitrogen does. This type of finding can have implications for different nutrient conservation strategies among plant species in the same community, as plants seem to be more sensitive to changes in soil phosphorus than nitrogen, though nitrogen is still extremely important. [7] What also makes this interesting is the fact that nitrogen is a limiting factor for plant growth, and so is actually critical for the overall health of the plant community. Grazing of herd animals has been shown to have a positive effect on the levels of nitrogen in the soil, though the return of nitrogen in the excrement. The addition of dung to the soils of this region in a laboratory setting resulted in increased availability of ammonia for plants (their primary nitrogen source). However, in an unaltered system, soil nitrogen tends to be more constant, whereas soil phosphorus is more influenced by climate variation, which may explain why, even though nitrogen is the limiting factor, phosphorus can be a greater influence on the N:P ratio of plant nutrients. [8] alpine grassland temperature range from 14 degrees Fahrenheit in winter to 50 degrees Fahrenheit in summer
Because of their elevation, alpine regions are thought to experience higher rates of warming, causing them to be more sensitive and vulnerable to global climate change. [9] Other major threats to Alpine-Steppes include overgrazing, as well as land use change associated with increases in population size. [3] Because of this, the authorities in areas throughout China are under pressure to implement programs to protect and preserve this fragile ecosystem.
One such program is the "Retire Livestock and Restore Pastures" initiative, [3] which requires the use of special enclosure fencing. The purpose of this protective fencing is to prevent the grazing activity of large livestock, like sheep, yaks, and goats, in an attempt to restore the degraded biomass, and maintain ecosystem function. [1] Often these effects can best be seen by the changes they produce in the biogeochemical properties of the soil. [1] The overall goal is to improve ecosystem carbon, nitrogen, and phosphorus storage, by increasing both vegetation and soil pools of these elements. [1] This effect is crucial because even a small percent change in carbon storage can have a huge positive impact on atmospheric carbon dioxide and global carbon levels, as well as ecosystem sustainability. [1] But carbon is not the only important factor. Low levels of nitrogen and phosphorus have also been found to limit plant growth and net primary productivity. [1] In one study, exclusion fencing was found to increase the carbon stored in the biomass, as well as the nitrogen and phosphorus in the above-ground biomass. [1] However this effect was minor, and not enough to compensate for the considerable loss of carbon, nitrogen, and phosphorus pools from the soil surface layer. [1] Another study found exclusion fencing to be a beneficial tool in lowering carbon dioxide emissions, and increasing methane consumption, which improves both the soil carbon and nitrogen stores. [3] Although findings are controversial, enclosure fencing remains a common practice in China because of the sensitivity of these grassland areas.
At an elevation of 4,500–6,000 m, Northern Tibet's area is covered by approximately 94% grasslands, including the alpine-steppe and alpine meadow. [10] The alpine-steppe in this area has less than 20% vegetation coverage, which consists mainly of Stipa purpurea , Artemisia capillaris , and Rhodiola rotundaia assemblages. [10] Compared to the alpine meadow, the alpine-steppe is cooler, arid or semi-arid, with little precipitation and barren soils. [10] The highest vegetation carbon pool can be found in August, and nitrogen and phosphorus concentrations in the area exhibit seasonal variations throughout the growing period. [10]
Overgrazing occurs when plants are exposed to intensive grazing for extended periods of time, or without sufficient recovery periods. It can be caused by either livestock in poorly managed agricultural applications, game reserves, or nature reserves. It can also be caused by immobile, travel restricted populations of native or non-native wild animals.
A grassland is an area where the vegetation is dominated by grasses (Poaceae). However, sedge (Cyperaceae) and rush (Juncaceae) can also be found along with variable proportions of legumes, like clover, and other herbs. Grasslands occur naturally on all continents except Antarctica and are found in most ecoregions of the Earth. Furthermore, grasslands are one of the largest biomes on Earth and dominate the landscape worldwide. There are different types of grasslands: natural grasslands, semi-natural grasslands, and agricultural grasslands. They cover 31–69% of the Earth's land area.
This glossary of ecology is a list of definitions of terms and concepts in ecology and related fields. For more specific definitions from other glossaries related to ecology, see Glossary of biology, Glossary of evolutionary biology, and Glossary of environmental science.
A meadow is an open habitat or field, vegetated by grasses, herbs, and other non-woody plants. Trees or shrubs may sparsely populate meadows, as long as these areas maintain an open character. Meadows can occur naturally under favourable conditions, but are often artificially created from cleared shrub or woodland for the production of hay, fodder, or livestock. Meadow habitats, as a group, are characterized as "semi-natural grasslands", meaning that they are largely composed of species native to the region, with only limited human intervention.
Bromus tectorum, known as downy brome, drooping brome or cheatgrass, is a winter annual grass native to Europe, southwestern Asia, and northern Africa, but has become invasive in many other areas. It now is present in most of Europe, southern Russia, Japan, South Africa, Australia, New Zealand, Iceland, Greenland, North America and western Central Asia. In the eastern US B. tectorum is common along roadsides and as a crop weed, but usually does not dominate an ecosystem. It has become a dominant species in the Intermountain West and parts of Canada, and displays especially invasive behavior in the sagebrush steppe ecosystems where it has been listed as noxious weed. B. tectorum often enters the site in an area that has been disturbed, and then quickly expands into the surrounding area through its rapid growth and prolific seed production.
In agriculture, grazing is a method of animal husbandry whereby domestic livestock are allowed outdoors to free range and consume wild vegetations in order to convert the otherwise indigestible cellulose within grass and other forages into meat, milk, wool and other animal products, often on land that is unsuitable for arable farming.
The puna grassland ecoregion, of the montane grasslands and shrublands biome, is found in the central Andes Mountains of South America. It is considered one of the eight Natural Regions in Peru, but extends south, across Chile, Bolivia, and western northwest Argentina. The term puna encompasses diverse ecosystems of the high Central Andes above 3200–3400 m.
Human impact on the nitrogen cycle is diverse. Agricultural and industrial nitrogen (N) inputs to the environment currently exceed inputs from natural N fixation. As a consequence of anthropogenic inputs, the global nitrogen cycle (Fig. 1) has been significantly altered over the past century. Global atmospheric nitrous oxide (N2O) mole fractions have increased from a pre-industrial value of ~270 nmol/mol to ~319 nmol/mol in 2005. Human activities account for over one-third of N2O emissions, most of which are due to the agricultural sector. This article is intended to give a brief review of the history of anthropogenic N inputs, and reported impacts of nitrogen inputs on selected terrestrial and aquatic ecosystems.
Barren vegetation describes an area of land where plant growth may be sparse, stunted, and/or contain limited biodiversity. Environmental conditions such as toxic or infertile soil, high winds, coastal salt-spray, and climatic conditions are often key factors in poor plant growth and development. Barren vegetation can be categorized depending on the climate, geology, and geographic location of a specific area.
Pseudoroegneria spicata is a species of perennial bunchgrass known by the common name bluebunch wheatgrass. It is native to western North America.
Grazing pressure is defined as the number of grazing animals of a specified class per unit weight of herbage. It is well established in general usage.
Holistic Management in agriculture is an approach to managing resources that was originally developed by Allan Savory for grazing management., Holistic Management has been likened to "a permaculture approach to rangeland management". Holistic Management is a registered trademark of Holistic Management International. It has faced criticism from many researchers who argue it is unable to provide the benefits claimed.
Grassland degradation, also called vegetation or steppe degradation, is a biotic disturbance in which grass struggles to grow or can no longer exist on a piece of land due to causes such as overgrazing, burrowing of small mammals, and climate change. Since the 1970s, it has been noticed to affect plains and plateaus of alpine meadows or grasslands, most notably being in the Philippines and in the Tibetan and Inner Mongolian region of China, where 2,460 km2 (950 sq mi) of grassland is degraded each year. Across the globe it is estimated that 23% of the land is degraded. It takes years and sometimes even decades, depending on what is happening to that piece of land, for a grassland to become degraded. The process is slow and gradual, but so is restoring degraded grassland. Initially only patches of grass appear to die and appear brown in nature; but the degradation process, if not addressed, can spread to many acres of land. As a result, the frequency of landslides and dust storms may increase. The degraded land's less fertile ground cannot yield crops, nor can animals graze in these fields. With a dramatic decrease in plant diversity in this ecosystem, more carbon and nitrogen may be released into the atmosphere. These results can have serious effects on humans such as displacing herders from their community; a decrease in vegetables, fruit, and meat that are regularly acquired from these fields; and a catalyzing effect on global warming.
The fungal loop hypothesis suggests that soil fungi in arid ecosystems connect the metabolic activity of plants and biological soil crusts which respond to different soil moisture levels. Compiling diverse evidence such as limited accumulation of soil organic matter, high phenol oxidative and proteolytic enzyme potentials due to microbial activity, and symbioses between plants and fungi, the fungal loop hypothesis suggests that carbon and nutrients are cycled in biotic pools rather than leached or effluxed to the atmosphere during and between pulses of precipitation.
Regenerative agriculture is a conservation and rehabilitation approach to food and farming systems. It focuses on topsoil regeneration, increasing biodiversity, improving the water cycle, enhancing ecosystem services, supporting biosequestration, increasing resilience to climate change, and strengthening the health and vitality of farm soil.
The key characteristic of dry grasslands is that they have low-growing plants, causing the area to be quite open. They also have a mottled structure, which leads to a biome with sunny or semi-shaded areas. On top of that, their soil is relatively dry and nutrient-poor. There are, however, types of grasslands with a higher humus and nutrient content. The soil of these areas overlie acid rocks or deposits such as sands and gravels. Dry grasslands belong to different zones such as: the natural zonal or azonal/extrazonal vegetation and the semi-natural vegetation. Overall, there are 13 classes that fall under dry grasslands.
Woody plant encroachment is a natural phenomenon characterised by the increase in density of woody plants, bushes and shrubs, at the expense of the herbaceous layer, grasses and forbs. It predominantly occurs in grasslands, savannas and woodlands and can cause regime shifts from open grasslands and savannas to closed woodlands. The term bush encroachment refers to the expansion of native plants and not the spread of alien invasive species. It is thus defined by plant density, not species. Woody encroachment is often considered interpreted as a symptom of land degradation. The phenomenon is observed across different ecosystems and with different characteristics and intensities globally.
Carbon farming is a set of agricultural methods that aim to store carbon in the soil, crop roots, wood and leaves. The technical term for this is carbon sequestration. The overall goal of carbon farming is to create a net loss of carbon from the atmosphere. This is done by increasing the rate at which carbon is sequestered into soil and plant material. One option is to increase the soil's organic matter content. This can also aid plant growth, improve soil water retention capacity and reduce fertilizer use. Sustainable forest management is another tool that is used in carbon farming. Carbon farming is one component of climate-smart agriculture. It is also one of the methods for carbon dioxide removal (CDR).
Annual grasslands are a type of grassland ecosystem characterized by the dominance of annual grasses and forbs. They are most commonly found in regions with Mediterranean climates, such as California, and provide important habitats for a variety of wildlife species.