Anaerotruncus

Last updated

Anaerotruncus
Scientific classification
Domain:
Phylum:
Class:
Order:
Family:
Genus:
Anaerotruncus

Lawson et al. 2004 [1]
Species

A. colihominis [1]

Anaerotruncus is a bacterial genus from the family of Clostridiaceae, with one known species ( Anaerotruncus colihominis ). [1] [2] Anaerotruncus bacteria occur in the human vaginal flora and gut. [3] [4]

Related Research Articles

Human microbiome Microorganisms in or on human tissues and biofluids

The human microbiome is the aggregate of all microbiota that reside on or within human tissues and biofluids along with the corresponding anatomical sites in which they reside, including the skin, mammary glands, placenta, seminal fluid, uterus, ovarian follicles, lung, saliva, oral mucosa, conjunctiva, biliary tract, and gastrointestinal tract. Types of human microbiota include bacteria, archaea, fungi, protists and viruses. Though micro-animals can also live on the human body, they are typically excluded from this definition. In the context of genomics, the term human microbiome is sometimes used to refer to the collective genomes of resident microorganisms; however, the term human metagenome has the same meaning.

Firmicutes phylum of bacteria

The Firmicutes are a phylum of bacteria, most of which have gram-positive cell wall structure. A few, however, such as Megasphaera, Pectinatus, Selenomonas and Zymophilus, have a porous pseudo-outer membrane that causes them to stain gram-negative. Scientists once classified the Firmicutes to include all gram-positive bacteria, but have recently defined them to be of a core group of related forms called the low-G+C group, in contrast to the Actinobacteria. They have round cells, called cocci, or rod-like forms (bacillus).

Clostridia

The Clostridia are a highly polyphyletic class of Firmicutes, including Clostridium and other similar genera. They are distinguished from the Bacilli by lacking aerobic respiration. They are obligate anaerobes and oxygen is toxic to them. Species of the class Clostridia are often but not always Gram-positive and have the ability to form spores. Studies show they are not a monophyletic group, and their relationships are not entirely certain. Currently, most are placed in a single order called Clostridiales, but this is not a natural group and is likely to be redefined in the future.

Gut flora Community of microorganisms in the gut

Gut flora or gut microbiota are the microorganisms including bacteria, archaea and fungi that live in the digestive tracts of humans and other animals including insects. The gastrointestinal metagenome is the aggregate of all the genomes of gut microbiota. The gut is the main location of human microbiota.

Dysbiosis is a term for a microbial imbalance or maladaptation on or inside the body, such as an impaired microbiota. For example, a part of the human microbiota, such as the skin flora, gut flora, or vaginal flora, can become deranged, with normally dominating species underrepresented and normally outcompeted or contained species increasing to fill the void. Dysbiosis is most commonly reported as a condition in the gastrointestinal tract, particularly during small intestinal bacterial overgrowth (SIBO) or small intestinal fungal overgrowth (SIFO).

Microbiota Community of microorganisms

Microbiota are "ecological communities of commensal, symbiotic and pathogenic microorganisms" found in and on all multicellular organisms studied to date from plants to animals. Microbiota include bacteria, archaea, protists, fungi and viruses. Microbiota have been found to be crucial for immunologic, hormonal and metabolic homeostasis of their host. The term microbiome describes either the collective genomes of the microorganisms that reside in an environmental niche or the microorganisms themselves.

Prevotella is a genus of Gram-negative bacteria.

<i>Bifidobacterium</i>

Bifidobacterium is a genus of gram-positive, nonmotile, often branched anaerobic bacteria. They are ubiquitous inhabitants of the gastrointestinal tract, vagina and mouth of mammals, including humans. Bifidobacteria are one of the major genera of bacteria that make up the gastrointestinal tract microbiota in mammals. Some bifidobacteria are used as probiotics.

Ruminococcus is a genus of bacteria in the class Clostridia. They are anaerobic, Gram-positive gut microbes. One or more species in this genus are found in significant numbers in the human gut microbiota. The type species is R. flavefaciens. As usual, bacteria taxonomy is in flux, with Clostridia being paraphyletic, and some erroneous members of Ruminococcus being reassigned to a new genus Blautia on the basis of 16S rRNA gene sequences.

Akkermansia is a genus in the phylum Verrucomicrobia (Bacteria). The genus was first proposed in 2004 by Muriel Derrien and others, with the type species Akkermansia muciniphila.

Parasutterella is a genus of Gram-negative, circular/rod-shaped, obligate anaerobic, non-spore forming bacteria from the Proteobacteria phylum, Betaproteobacteria class and the family Sutterellaceae. Previously, this genus was considered "unculturable," meaning that it could not be characterized through conventional laboratory techniques, such as grow in culture due its unique requirements of anaerobic environment. The genus was initially discovered through 16S rRNA sequencing and bioinformatics analysis. By analyzing the sequence similarity, Parasutterella was determined to be related most closely to the genus Sutterella and previously classified in the family Alcaligenaceae.

Gut–brain axis

The gut–brain axis is the biochemical signaling that takes place between the gastrointestinal tract and the central nervous system (CNS). The term "gut–brain axis" is occasionally used to refer to the role of the gut flora in the interplay as well, whereas the term "microbiota–gut–brainaxis" explicitly includes the role of gut flora in the biochemical signaling events that take place between the GI tract and CNS.

Microbiota-accessible carbohydrates (MACs) are carbohydrates that are resistant to digestion by a host's metabolism, and are made available for gut microbes, as prebiotics, to ferment or metabolize into beneficial compounds, such as short chain fatty acids. The term, ‘‘microbiota-accessible carbohydrate’’ contributes to a conceptual framework for investigating and discussing the amount of metabolic activity that a specific food or carbohydrate can contribute to a host's microbiota.

Catherine Anne Lozupone is an American microbiologist who specializes in bacteria and how they impact human health. Her noted work in trying to determine what constitutes "normal" gut bacteria, led to her creation of the UniFrac algorithm, used by researchers to plot the relationships between microbial communities in the human body.

Placental microbiome

The placental microbiome is the nonpathogenic, commensal bacteria claimed to be present in a healthy human placenta and is distinct from bacteria that cause infection and preterm birth in chorioamnionitis. Until recently, the healthy placenta was considered to be a sterile organ but now genera and species have been identified that reside in the basal layer.

Hologenomics is the omics study of hologenomes. A hologenome is the whole set of genomes of a holobiont, an organism together with all co-habitating microbes, other life forms, and viruses. While the term hologenome originated from the hologenome theory of evolution, which postulates that natural selection occurs on the holobiont level, hologenomics uses an integrative framework to investigate interactions between the host and its associated species. Examples include gut microbe or viral genomes linked to human or animal genomes for host-microbe interaction research. Hologenomics approaches have also been used to explain genetic diversity in the microbial communities of marine sponges.

Anaerococcus is a genus of bacteria. Its type species is Anaerococcus prevotii. These bacteria are Gram-positive and strictly anaerobic. The genus Anaerococcus was proposed in 2001. Its genome was sequenced in August 2009. The genus Anaerococcus is one of six genera classified within the group GPAC. These six genera are found in the human body as part of the commensal human microbiota.

Salivary microbiome

The Salivary microbiome is the nonpathogenic, commensal bacteria present in the healthy human salivary glands. It is distinct from bacteria that may cause infection in the glands. It differs from the oral microbiome which is located in the oral cavity. Oral microorganisms tend to adhere to teeth. The oral microbiome possesses its own characteristic microorganisms found there. Resident microbes of the mouth adhere to the teeth and gums. "[T]here may be important interactions between the saliva microbiome and other microbiomes in the human body, in particular, that of the intestinal tract."

Human milk microbiome Community of microorganisms in human milk

The human milk microbiota, also known as human milk probiotics (HMP), refers to the microbiota residing in the human mammary glands and breast milk. Human breast milk has been traditionally assumed to be sterile, but more recently both microbial culture and culture-independent techniques have confirmed that human milk contains diverse communities of bacteria which are distinct from other microbial communities inhabiting the human body.

Morganellaceae

The Morganellaceae are a family of Gram-negative bacteria that include some important human pathogens formerly classified as Enterobacteriaceae. This family is a member of the order Enterobacterales in the class Gammaproteobacteria of the phylum Proteobacteria. Genera in this family include the type genus Morganella, along with Arsenophonus, Cosenzaea, Moellerella, Photorhabdus, Proteus, Providencia and Xenorhabdus.

References

  1. 1 2 3 Parte, A.C. "Anaerotruncus". LPSN .
  2. "Anaerotruncus". www.uniprot.org.
  3. Marchesi, editor, Julian R. (2014). The human microbiota and microbiome. Wallingford: CABI. ISBN   978-1-780-64049-5.CS1 maint: extra text: authors list (link)
  4. Ravishankar, Rai V (2015). Advances in Food Biotechnology. John Wiley & Sons. ISBN   978-1-118-86447-0.

Further reading