Anisogramma anomala

Last updated

Anisogramma anomala
Anisogramma anomala.jpg
Cankers caused by Anisogramma anomala on a hazlenut branch
Scientific classification
Kingdom:
Phylum:
Class:
Subclass:
Order:
Family:
Genus:
Species:
A. anomala
Binomial name
Anisogramma anomala
(Peck) E. Müll., (1962)
Synonyms

Apioporthe anomala(Peck) Höhn., (1917)
Cryptosporella anomala(Peck) Sacc., (1882)
Diatrype anomalaPeck

Contents

Anisogramma anomala is a plant pathogen that causes a disease known as Eastern filbert blight on Corylus spp. (hazlenut). Also known as EFB (Eastern Filbert Blight). [1]

Disease cycle

Anisogramma anomala is an ascomycete that has a two-year disease cycle. Infection is thought to typically occur during the wet season between February and May. [2] The infection typically occurs at the apical bud during periods of high humidity that favor the pathogen. After the initial infection the pathogen can eventually spread to the phloem, cambium, and even the outer xylem. This fungal pathogen produces cankers made up of stromata. The stromata typically develop the second summer after the initial infection. Within the stroma, perithecia are produced that give rise to asci and ascospores. The ascospores are released as a white ooze during wet weather. Wind-driven water droplets and splashing spread the spores to new potential hosts. [3]

Hosts and symptoms

Anisogramma anomala's host is the European hazelnut. It is a particular problem on Corylus avellana , which is farmed commercially. Wild alternate hosts do exist and make elimination of the disease particularly hard. [4] The predominant infected tissue is the branches. The disease begins producing cankers on the branches that continue to spread each year. The disease is usually diagnosed by the stromata that make up a cankers being identified. The stromata are elliptical and black. They form in rows and continue to grow in this pattern each year because they are perennial. [5] These stromata will eventually emit a white ooze containing spores that can also be used for diagnosis.[ citation needed ]

Pathogenesis

Anisogramma anomala’s ascospores can only infect immature tissue, both leaf and stem, near the apical bud of new shoots. [6] They are unable to enter through wounds or natural openings of mature tissues and seeds. [7]

Corylus cultivars with the single dominant resistant gene from "Gasaway” may get cankers, but at a low frequency; the cankers may be smaller, and may not produce spores. [7] Some of the cankers will heal over the years, assuming that stromata are destroyed. [7] Some A. anomala strains from East-Northern America can overcome the single dominant resistance gene of these resistant cultivars, indicating that the plant-pathogen interaction is multifaceted. [7]

Management

There are many different methods for managing Anisogramma anomala. These include both chemical and cultural control of the disease. An integrated management system using both types of control is recommended for Eastern Filbert Blight. Systemic fungicides are recommended when the shoots of the plant are elongating rapidly. If protectant fungicides are going to be used it is recommended to apply every 8 to 17 days. [6] These fungicides interrupt the disease by killing the fungal cells on contact preventing the spread of the disease. Although chemical control can be effective, cultural management is the most common method of control for this disease. Cultural management for Eastern Filbert Blight involves scouting orchards, pruning and removing cankers, and removing plant debris from the ground. Orchards should be scouted thoroughly twice per year to remove cankers. During the winter cankers are easier to observe and should be removed. When removing cankers the branch should be cut 3 feet below the end of the canker. Any material that was removed should be immediately burned or buried. Lastly, susceptible pollinizers should be severely pruned back on a 3 or 4-year rotational schedule. [3] These cultural methods interrupt the spread of the disease through an infected tree. Anisogramma anomala is a slow moving disease and the pruning and removal of infected branches removes the reproductive structures needed to produce spores for infection.[ citation needed ]

Environment

Precipitation events and duration of those events have been found to influence spore dispersal. Major rainstorms, on average, accounted for 90% of total ascospores released while brief and showery rains accounted for 10% in daily measurements; dews rarely induce ascospore dispersal. [8] Precipitation events that occurred for at least 5 hours exhibited 75% of daily ascospore capture while 10-hour and 20-hour durations exhibited 95% and 100% ascospore capture respectively. [8] Thus, low durations of powerful storms are enough to induce a significant amount of spore dispersal.[ citation needed ]

However, no correlation has been established between precipitation intensity and ascospore density, indicating that ascospores are not actively dispersed by rain splashes; rather, they are forcibly ejected into air currents, granted by the long beak and narrow restricted ostiole of the perithecium and the expulsion of spores from high  internal pressure caused by a swollen, wetted perithecium. [8] Spores are not released until the first precipitating event that causes the perithecium to swell; afterwards, subsequent precipitation immediately releases spores, but the maximum rate of ascospore release is not obtained until 3 to 5 hours of precipitation. [8] This indicates that consistent precipitating events will likely lead to a greater dispersal of spores.[ citation needed ]

The greatest likelihood of ascospore release occurs near bud-break (mid-March) when major storms are most prevalent. [8] Late spring showed a decrease in ascospore dispersal due to fewer viable ascospores and major rainstorms. [8] A. anomala has also been found to travel long distances on infected plant material of Corylus spp., so improper disposal of dead branch tissues is conducive to diseases—although A. anomala does not live saprophytically on dead tissues. [9] There has been no correlation between light, temperature, and ascospore dispersals in field studies. [8]

Importance

The disease that Anisogramma anomala causes has significantly delayed commercial hazelnut production in North America. Hazelnut is an important commodity as it is the 5th most important tree nut in the world. [10] 90% of the world crop is used as kernels in candies, baked goods, and other products. [10]   Some important brands that use hazelnuts includes Nutella and Ferrero Rocher. The US produces only 4% of hazelnuts, and 99% of it is grown in the Willamette Valley of Oregon, which provides a perfect climate for hazelnut trees. [10] Eastern filbert blight is prevalent in the East, so commercial production of hazelnut in the U.S. was initially successful in the west. [11] However, in the late 1960s, the disease was detected in Washington state, and eventually it spread to British Columbia, despite efforts to contain it, and was first detected in 2002. [11] Prior to this, little was known about the disease because European colonists provided little documentation about the destruction of European hazelnut trees in the east. Study of the fungus and the search for resistance began at Oregon State University in the 1970s, which led to the development of methods that identified resistant plants and their use in plant breeding. [10] New resistant strains and other cultural, chemical, biological, and mechanical practices as described by eastern filbert blight management program (EFBMP) have revived commercial hazelnut production in Canada. [11]

Related Research Articles

<span class="mw-page-title-main">Apple scab</span> Plant disease caused by fungus

Apple scab is a common disease of plants in the rose family (Rosaceae) that is caused by the ascomycete fungus Venturia inaequalis. While this disease affects several plant genera, including Sorbus, Cotoneaster, and Pyrus, it is most commonly associated with the infection of Malus trees, including species of flowering crabapple, as well as cultivated apple. The first symptoms of this disease are found in the foliage, blossoms, and developing fruits of affected trees, which develop dark, irregularly-shaped lesions upon infection. Although apple scab rarely kills its host, infection typically leads to fruit deformation and premature leaf and fruit drop, which enhance the susceptibility of the host plant to abiotic stress and secondary infection. The reduction of fruit quality and yield may result in crop losses of up to 70%, posing a significant threat to the profitability of apple producers. To reduce scab-related yield losses, growers often combine preventive practices, including sanitation and resistance breeding, with reactive measures, such as targeted fungicide or biocontrol treatments, to prevent the incidence and spread of apple scab in their crops.

<span class="mw-page-title-main">Diplodia tip blight</span> Fungal disease of conifers

Diplodia tip blight, also known as Sphaeropsis blight, is a widespread disease affecting conifers caused by an opportunistic fungal pathogen, Diplodia sapinea. It is found in “both hemispheres between the latitudes 30° and 50° north and south". The diseases symptoms include: damping off and collar rot of seedlings, stem canker, root disease, and, most commonly, shoot blight. These symptoms have caused significant economic loss to nurseries and pine plantations. In a nursery in the north-central United States, losses of 35% have been reported. Shoot blight and eventual die back can cause a reduction of marketable volume in timber by 63%. Infection of terminal shoots can result in dead-top which significantly limits the usable length of the tree trunk. The presence of the pathogen in concert with severe weather conditions can lead to extreme loss. Following a severe hailstorm in South Africa, nearly 5,000 acres of pine plantation were infected with Diplodia tip blight. It was necessary to prematurely harvest large swaths of the plantations resulting in a loss of 45%. Areas that were not harvested prematurely still suffered an average timber loss of 11%.

<i>Venturia inaequalis</i> Species of fungus

Venturia inaequalis is an ascomycete fungus that causes the apple scab disease.

<i>Monilinia fructicola</i> Species of fungus

Monilinia fructicola is a species of fungus in the order Helotiales. A plant pathogen, it is the causal agent of brown rot of stone fruits.

Leptosphaeria coniothyrium is a plant pathogen. It can be found around the world.

<i>Monilinia laxa</i> Species of fungus

Monilinia laxa is a plant pathogen that is the causal agent of brown rot of stone fruits.

<i>Diaporthe helianthi</i> Species of fungus

Diaporthe helianthi is a fungal pathogen that causes Phomopsis stem canker of sunflowers. In sunflowers, Phomopsis helianthi is the causative agent behind stem canker. Its primary symptom is the production of large canker lesions on the stems of sunflower plants. These lesions can eventually lead to lodging and plant death. This disease has been shown to be particularly devastating in southern and eastern regions of Europe, although it can also be found in the United States and Australia. While cultural control practices are the primary method of controlling for Stem Canker, there have been a few resistant cultivars developed in regions of Europe where the disease is most severe.

<i>Ascochyta</i> Genus of fungi

Ascochyta is a genus of ascomycete fungi, containing several species that are pathogenic to plants, particularly cereal crops. The taxonomy of this genus is still incomplete. The genus was first described in 1830 by Marie-Anne Libert, who regarded the spores as minute asci and the cell contents as spherical spores. Numerous revisions to the members of the genus and its description were made for the next several years. Species that are plant pathogenic on cereals include, A. hordei, A. graminea, A. sorghi, A. tritici. Symptoms are usually elliptical spots that are initially chlorotic and later become a necrotic brown. Management includes fungicide applications and sanitation of diseased plant tissue debris.

Septoria cannabis is a species of plant pathogen from the genus Septoria that causes the disease commonly known as Septoria leaf spot. Early symptoms of infection are concentric white lesions on the vegetative leaves of cannabis plants, followed by chlorosis and necrosis of the leaf until it is ultimately overcome by disease and all living cells are then killed. Septoria, which is an ascomycete and pycnidia producing fungus, has been well known to attack Solanaceae and Cucurbitaceae species as well as many tree species. This genus is known to comprise over 1,000 species of pathogens, each infecting a specific and unique host.

The plant pathogenic fungus Leucostoma kunzei is the causal agent of Leucostoma canker, a disease of spruce trees found in the Northern Hemisphere, predominantly on Norway spruce and Colorado blue spruce. This disease is one of the most common and detrimental stem diseases of Picea species in the northeastern United States, yet it also affects other coniferous species. Rarely does it kill its host tree; however, the disease does disfigure by killing host branches and causing resin exudation from perennial lesions on branches or trunks.

Eutypella canker is a plant disease caused by the fungal pathogen Eutypella parasitica. This disease is capable of infecting many species of maple trees and produces a large, distinguishable canker on the main trunk of the tree. Infection and spread of the disease is accomplished with the release of ascospores from perithecia. Therefore, the best way to manage the Eutypella canker is to remove trees that have been infected. If infected, it can decrease the quality of wood cut for lumber and can thus have a negative economic impact.

<i>Ascochyta pisi</i> Species of fungus

Ascochyta pisi is a fungal plant pathogen that causes ascochyta blight on pea, causing lesions of stems, leaves, and pods. These same symptoms can also be caused by Ascochyta pinodes, and the two fungi are not easily distinguishable.

<i>Didymella bryoniae</i> Species of fungus

Didymella bryoniae, syn. Mycosphaerella melonis, is an ascomycete fungal plant pathogen that causes gummy stem blight on the family Cucurbitaceae, which includes cantaloupe, cucumber, muskmelon and watermelon plants. The anamorph/asexual stage for this fungus is called Phoma cucurbitacearum. When this pathogen infects the fruit of cucurbits it is called black rot.

<i>Diaporthe phaseolorum <span style="font-style:normal;">var.</span> sojae</i> Fungal plant pathogen

Diaporthe phaseolorum var. sojae is a plant pathogen infecting soybean and peanut.

<i>Dibotryon morbosum</i> Species of fungus

Dibotryon morbosum or Apiosporina morbosa is a plant pathogen, which is the causal agent of black knot. It affects members of the Prunus genus such as; cherry, plum, apricot, and chokecherry trees in North America. The disease produces rough, black growths that encircle and kill the infested parts, and provide habitat for insects.

This article summarizes different crops, what common fungal problems they have, and how fungicide should be used in order to mitigate damage and crop loss. This page also covers how specific fungal infections affect crops present in the United States.

<span class="mw-page-title-main">Southern corn leaf blight</span> Fungal disease of maize

Southern corn leaf blight (SCLB) is a fungal disease of maize caused by the plant pathogen Bipolaris maydis.

<span class="mw-page-title-main">Phomopsis blight of juniper</span> Species of fungus

Phomopsisblight of juniper is a foliar disease discovered in 1917 caused by the fungal pathogen Phomopsis juniperovora. The fungus infects new growth of juniper trees or shrubs, i.e. the seedlings or young shoots of mature trees. Infection begins with the germination of asexual conidia, borne from pycnidia, on susceptible tissue, the mycelia gradually move inwards down the branch, and into the main stem. Management strategies mainly include removing and destroying diseased tissue and limiting the presence of moisture on plants. Junipers become resistant to infection as they mature and the young yellow shoots turn dark green. Preventive strategies include planting only resistant varieties and spraying new growth with fungicide until plants have matured.

Black pod disease is a fungal disease of Cocoa trees. This pathogen if left untreated can destroy all yields; annually the pathogen can cause a yield loss of up to 1/3 and up to 10% of total trees can be lost completely.

Gummy stem blight is a cucurbit-rot disease caused by the fungal plant pathogen Didymella bryoniae. Gummy stem blight can affect a host at any stage of growth in its development and affects all parts of the host including leaves, stems and fruits. Symptoms generally consist of circular dark tan lesions that blight the leaf, water soaked leaves, stem cankers, and gummy brown ooze that exudes from cankers, giving it the name gummy stem blight. Gummy stem blight reduces yields of edible cucurbits by devastating the vines and leaves and rotting the fruits. There are various methods to control gummy stem blight, including use of treated seed, crop rotation, using preventative fungicides, eradication of diseased material, and deep plowing previous debris.

References

  1. Chittaranjan Kole (Editor) Wild Crop Relatives: Genomic and Breeding Resources: Forest Trees , p. xvii, at Google Books
  2. "eastern filbert blight (Anisogramma anomala)". www.plantwise.org. Retrieved 2017-12-15.
  3. 1 2 "Eastern Filbert Blight - Anisogramma anomala" (PDF). Oregon State University Extension Service.
  4. Molnar, Thomas (2010). "Survey of Corylus Resistance to Anisogramma anomala from Different Geographic Locations" (PDF).{{cite journal}}: Cite journal requires |journal= (help)
  5. "Eastern Filbert Blight" (PDF). Cornell University - Plant Disease Diagnostic Clinic.
  6. 1 2 "Anisogramma anomala (eastern filbert blight) - Bugwoodwiki". wiki.bugwood.org. Retrieved 2017-12-15.
  7. 1 2 3 4 "Hazelnut (Corylus avellana)-Eastern Filbert Blight". Pacific Northwest Pest Management Handbooks. 2015-09-11. Retrieved 2019-12-08.
  8. 1 2 3 4 5 6 7 Pinkerton, J. N.; Johnson, K. B.; Stone, J. K.; Ivors, K. L. (February 1998). "Factors Affecting the Release of Ascospores of Anisogramma anomala". Phytopathology. 88 (2): 122–128. doi:10.1094/PHYTO.1998.88.2.122. ISSN   0031-949X. PMID   18944980.
  9. "Data Sheets on Quarantine Pests Anisogramma Anomala". www.google.com. Retrieved 2019-12-08.
  10. 1 2 3 4 Molnar, Thomas (Summer 2011). "Developing Hazelnuts (Corylus spp.) With Durable Resistance to Eastern Filbert Blight" (PDF).
  11. 1 2 3 "RMD-18-01: Pest Risk Management Document –Deregulation of Anisogramma Anomala, Causal Agent of Eastern Filbert Blight" (PDF).