Aphonopelma chalcodes | |
---|---|
Scientific classification | |
Domain: | Eukaryota |
Kingdom: | Animalia |
Phylum: | Arthropoda |
Subphylum: | Chelicerata |
Class: | Arachnida |
Order: | Araneae |
Infraorder: | Mygalomorphae |
Family: | Theraphosidae |
Genus: | Aphonopelma |
Species: | A. chalcodes |
Binomial name | |
Aphonopelma chalcodes Chamberlin, 1940 | |
Synonyms [1] | |
|
Aphonopelma chalcodes, commonly known as the western desert tarantula, desert blonde tarantula, Arizona blonde tarantula or Mexican blonde tarantula, is a species of spider belonging to the family Theraphosidae. It has a limited distribution in the deserts of Arizona and adjacent parts of Mexico but can be very common within this range. The common name "blonde tarantula" refers to the carapace, which is densely covered in pale hairs, and contrasts strongly with the all-dark legs and abdomen. Additionally, these spiders have low toxicity, a long life expectancy, and several offspring. [2]
This 3 to 5 in (8 to 13 cm) large bodied, burrowing spider is commonly seen during the summer rainy season in southwestern deserts. The female is usually a uniform tan color. The male has black legs, a copper-colored cephalothorax and a reddish abdomen. The female body length is up to 56 mm, males only reaching 44 mm. Their burrows can be as large as 1 to 2 in (25 to 51 mm) in diameter, with some strands of silk across the opening. [3]
Multiple lectins have been detected in the serum of Aphonopelma chalcodes. Simply, lectins are proteins that bind to carbohydrates. [4] Research studies illustrate that the lectins within the serum of A. chalcodes have the ability to bind to sialic acid. [4] The function of sialic acids is diverse, including contributing significantly to protein folding, neural development, and metabolism. [5] However, the implications of the lectins binding to sialic acid must be investigated further.
The visual system of A. chalcodes is critical to its survival as spiders rely on their spectral sensitivity and visual acuity in order to survive. These spiders have two sets of eyes, referred to as the primary and secondary sets. Spectral sensitivity within these eyes is critical as it is essential in distinguishing different wavelengths. [6] The peak response amplitudes of these spiders were directly correlated to the intensity of light that was exhibited. However, it was also found that the period of depolarizations, pertaining to receptor potentials, was longer for longer flashes.
Additionally, the spectral sensitivity of the species was assessed. The range of wavelength sensitivity in all ocular cells was between 350 and 640 nm. The most sensitive spectral sensitivity was around 500 nm and the least sensitive point was at 640 nm. [6] Both the primary and secondary sets of eyes had very similar spectral sensitivities and waveforms. Research studies have demonstrated that the receptor potentials of the tarantula photoreceptors in response to light flashes was characterized by smooth depolarizations. Lastly, secondary eyes in these spiders have tapeta, which are used to amplify and detect dim light more effectively than primary light. The function of both the primary and secondary eyes in A. chalcodes resembles the functions of rods and cones in other vertebrates. [6]
Molting is a biological process that invertebrates often go through. Molting in spiders consists of shedding the exoskeleton and forming a new covering through different developmental stages. [7] This process allows spiders to grow as they go through different stages of development. [7] The molting of A. chalcodes has been determined to occur through ten primary stages, with a total of twenty-five molts occurring over a two-year period. [8] Each stage of molting corresponds to shedding of a different portion of their exoskeleton ranging from the dorsum to the abdomen and ultimately the legs. Additionally, each stage of molting does not take the same amount of time, with the first stage being the most extensive. [8]
Additionally, tarantulas are able to molt any time of the day. Research studies have illustrated that molting is not restricted by any time of day. [8] Although molting is not dependent on the time of day, it is seasonally dependent. In A. chalcodes, molting is especially apparent during March and April. [8] The reason for why tarantulas tend to molt during spring are not currently known, however it has been established that is seasonally dependent.
The spider undergoes sexual differentiation later in development, as it is born resembling a female. After several years, the spider may begin to display male traits after further differentiation. [9] Male A. chalcodes develop palpal bulbs, intended to store sperm and insert it into the female's genital opening. Females possess abdominal pouches (spermatheca) that are utilized in order to store sperm until reproduction occurs through the laying of eggs. When reproduction occurs, females lay eggs in the male's sperm in order to provide nutrients for the offspring. [10] The average number of offspring is 600, with an average gestation period of about six to seven weeks.
The life expectancy of an average A. chalcodes is about 24–30 years for females, and 5–10 years for males. This is highly dependent on the habitat and respective development of each spider, however in general, one can expect a high life expectancy in this particular species. The significantly higher life expectancy for females in comparison to males can be attributed to differences in development and reproductive organs. [11]
Aphonopelma chalcodes, the western desert tarantula, occupies several states within the southwestern United States. Specifically, these spiders are known to be common in New Mexico and Arizona within the United States.
This spider often lives in desert soil and is resistant to harsh weather. These spiders often reside in burrows which they create for themselves. These burrows are very deep in order to help the spider resist and adapt to fluctuations in environmental temperature. However, when temperatures are between 23˚C and 31˚C, these spiders leave the burrows into the general outdoors. [12] A. chalcodes makes residence in burrows through digging under a stone or living in isolated burrows that are not being used. [13] The entrance to the burrow is surrounded by strands of silk, which allow the spider to detect that prey are present while it is hiding in the burrow.
The nocturnal activity of this spider begins when the silk covering surrounding the burrow is broken. Potential reasons explaining the breaking of the silk covering include the spider's circadian rhythm, decreased environmental light intensity, and surface temperatures. [12] During the night, tarantulas remain inside the burrow entrance expecting the arrival of prey. At dawn, the tarantula goes into the burrow. [12] Although A. chalcodes is particularly active at night, it is not strictly nocturnal because they are seen in the upper portion of the burrow early in the day. [8]
In general, spider venoms contain several classifications of neurotoxins that are relevant to the development of insecticides and other pharmaceutical preventative measures. [14] Specifically, the venom of A. chalcodes contains two compounds referred to as Apc600 and Apc728. Analysis of these neurotoxins within the venom revealed the presence of spermine, a polyamine involved in cellular metabolism, and 1,3-diaminopropane. These toxins have not been investigated significantly, however are theorized to function in short term paralysis or immobilization of the tarantulas' prey. [14]
The venom of A. chalcodes is not highly dangerous to humans. When compared to a bee sting, the level of venom is not significantly higher. [10] Specifically, these spiders are one of the least dangerous within their family of Theraphosidae.[ citation needed ]
They are popular among beginner tarantula keepers due to their long lifespan (5–10 years for males, up to 30 years for females) and docile nature. [3]
The Aphonopelma hentzi, also known as Texas brown tarantula, Oklahoma brown tarantula, or Missouri tarantula, is one of the most common species of tarantula living in the Southern United States today. Texas brown tarantulas can grow to leg spans in excess of 10 cm (4 in), and weigh more than 85 g (3 oz) as adults. Their bodies are dark brown, though shades may vary between individual tarantulas. The colors are more distinct after a molt, as with many arthropods.
Aphonopelma anax, commonly known as the Texas tan tarantula, is a species of spider belonging to the family Theraphosidae native to southern Texas and northern Mexico.
Aphonopelma chamberlini, also known as the Paso Robles rusty red tarantula, is regarded by some sources as a tarantula species endemic to California, and by others as synonymous with Aphonopelma iodius.
Aphonopelma johnnycashi is a species of tarantula. It was found in 2015 near Folsom Prison in California and named after Johnny Cash, whose song "Folsom Prison Blues" made the prison famous. Mature males are generally black, and the country music singer was also known as "The Man in Black".
Aphonopelma armada is a species of spider in the family Theraphosidae, found in Texas in the United States.
Aphonopelma chiricahua is a species of spiders in the family Theraphosidae, found in Arizona in the United States.
Aphonopelma steindachneri is a species of spider in the family Theraphosidae, found in United States (California) and Mexico.
Aphonopelma eutylenum, commonly called California ebony tarantula, is a species of spider in the family Theraphosidae, found in the United States (California).
Aphonopelma iodius is a species of spider in the tarantula family Theraphosidae, found in United States. A 1997 paper combined it with three other previously described species into a single species, calling it "A. iodium". However, iodius is a neuter comparative adjective and is the correct form. Aphonopelma smithii has also been synonymized with A. iodius. A. iodius is common in the Mojave Desert to the west of the Colorado River.
Aphonopelma joshua is a species of spider in the family Theraphosidae, found in United States (California).
Aphonopelma moderatum is a species of spider in the family Theraphosidae, found in United States, in the state of Texas. Commonly called the Rio Grande Gold Tarantula as they are found in the Rio Grande Valley of Texas.
Aphonopelma mojave is a species of spider, in the family Theraphosidae (tarantulas).
Aphonopelma vorhiesi is a species of spider in the family Theraphosidae, found in Arizona and New Mexico. This species looks similar to the Aphonopelma chalcodes, but it is far more rare in captivity.
Aphonopelma madera is a species of spiders in the family Theraphosidae, found in United States (Arizona).
Aphonopelma parvum is a species of spiders in the family Theraphosidae, found in United States.
Aphonopelma prenticei is a species of spiders in the family Theraphosidae, found in United States.
Aphonopelma xwalxwal is a species of spiders in the family Theraphosidae, found in United States (California).
Aphonopelma braunshausenii is a species of spiders in the family Theraphosidae, found in Mexico.
Aphonopelma truncatum is a species of spider in the family Theraphosidae, found in Mexico.
Aphonopelma helluo is a species of spider in the family Theraphosidae, found in Mexico.
Preston-Mafham, Ken (1998). Spiders: Compact Study Guide and Identifier. Angus Books. ISBN 978-1-904594-93-2.
{{cite book}}
: CS1 maint: multiple names: authors list (link)