An armoured vehicle-launched bridge (AVLB) [1] is a combat support vehicle, sometimes regarded as a subtype of military engineering vehicle, designed to assist militaries in rapidly deploying tanks and other armoured fighting vehicles across gap-type obstacles, such as rivers. The AVLB is usually a tracked vehicle converted from a tank chassis to carry a folding metal bridge instead of weapons. The AVLB's job is to allow armoured or infantry units to cross craters, anti-tank ditches, blown bridges, railroad cuts, canals, rivers and ravines, [2] when a river too deep for vehicles to wade through is reached, and no bridge is conveniently located, or sufficiently sturdy, a substantial concern when moving 60-ton tanks.
The bridge layer unfolds and launches its cargo, providing a ready-made bridge across the obstacle in only minutes. Once the span has been put in place, the AVLB vehicle detaches from the bridge, and moves aside to allow traffic to pass. Once all of the vehicles have crossed, it crosses the bridge itself and reattaches to the bridge on the other side. It then retracts the span ready to move off again. A similar procedure can be employed to allow crossings of small chasms or similar obstructions.
AVLBs can carry bridges of 19 metres (60 feet) or greater in length. By using a tank chassis, the bridge layer is able to cover the same terrain as main battle tanks. The provision of armour allows them to operate even in the face of enemy fire. However, this is not a universal attribute: some exceptionally sturdy 6×6 or 8×8 truck chassis have lent themselves to bridge-layer applications.
External videos | |
---|---|
Video of FV4205 Chieftain Armoured Vehicle-Launched Bridge (AVLB) showing an AVLB in action and the various steps of laying the bridge |
The roots of the modern AVLB can be found in World War I, at the dawn of tank warfare. Having developed tanks, the United Kingdom and France were confronted with the problem of mounting tank advances in the face of the trenches that dominated the battlefields. Early engagements, such as at Cambrai demonstrated the tank's utility, but also highlighted its vulnerability to battlefield geography—many early tanks found themselves ignominiously stuck in the trenches, having insufficiently long tracks to cross them (as at right).
To counter this disadvantage, tanks, especially the common British Heavy tanks, began to go into battle with fascines, sometimes as simple as a bundle of heavy sticks, carried on top. By dropping these into the trenches, they were able to create a wedge over which the tank could drive. Later, some tanks began to carry rails on their decks—the first AVLBs.
By 1919, the British Army had, at its training centre in Christchurch, a Mark V** tank with lifting gear able to carry and place a bridge or carry out mine clearing and demolition. [3]
It was in the World War II era that the importance of armoured bridge layers, as well as combat engineering vehicles and armoured recovery vehicles, became fully clear. With the advent of Blitzkrieg warfare, whole divisions had to advance along with tanks, which were suddenly far out-pacing the speed of infantry soldiers. Besides leading to the advent of self-propelled artillery/assault guns, mobile anti-aircraft and armoured personnel carriers/cars, it became clear that functions like vehicle repair, mine-clearing, and the like would have to be carried out by armoured vehicles advancing along with tanks.
These forces would have to be able to cross all forms of terrain without losing speed, and without having to concentrate their thrusts over certain bridges. The rising weight of armoured vehicles meant that fewer bridges could support these massed crossings. The only feasible solution to the dilemma posed by the mobility of all-mechanised armed forces was a dedicated platform that could improvise river and obstacle crossings at short notice and in inconvenient locations. Tracked and armoured, it was capable of operating alongside combat units, crossing rough terrain and advancing in the face of light fire. To maximize on common parts and ease maintenance complications, they were usually based on existing tank chassis.
One of the earliest series-produced examples is the Brückenleger IV, a German AVLB based on the Panzer IV, which entered service with the Wehrmacht in 1940. Twenty were built, but problems of excessive weight limited the vehicle's effectiveness, and eventually all 20 were converted back to tanks. A new scissors bridge design was brought out by the British in response to the war, sufficient to support a 24-ton load over 30 ft (9.1 m). This was developed for the Covenanter tank. It developed into a 30-ton capacity and was carried by a turretless Valentine tank. It was used in Italy, North West Europe and Burma.
The Allies developed similar equipment, mostly based on the ubiquitous Churchill infantry tank carrying the Small Box Girder, and the Sherman medium tank of the British and U.S. armies, respectively. In some early designs, bridge-layers could emplace bridges, but not retract them. Other vehicles were integral to the bridge themselves, such as the Churchill Ark, wading to the middle of a river or driving up against an obstacle and extending simple ramps in both directions. Following vehicles would drive directly over the bridge layer.
Most modern bridge layers are based on a main battle tank chassis. [4] An example of a modern main battle tank (MBT) chassis being converted to a bridgelayer is the creation of the M104 Wolverine Armored Bridgelayer. Based on a modified M1A2 SEP MBT chassis, the Wolverine replaces the MBT turret with a bridge fitted atop the chassis.
The bridge atop the M104 Wolverine measures 26m in length, and takes just 4 minutes to place across an obstacle securely. The bridge is built to be able to withstand countless crossings of vehicles as heavy as the M1A2 Abrams, which weighs around 70 tonnes. Another approach to bridge laying across water is the use of amphibious vehicles, which act as combination of pontoon and roadway. These enter the water and join to form a bridge. An example is the German M3 Amphibious Rig, a bridging vehicle used by Germany, the UK, Singapore, and Taiwan.
This section needs expansion. You can help by adding to it. (June 2011) |
An armoured fighting vehicle or armored fighting vehicle (AFV) is an armed combat vehicle protected by armour, generally combining operational mobility with offensive and defensive capabilities. AFVs can be wheeled or tracked. Examples of AFVs are tanks, armoured cars, assault guns, self-propelled artilleries, infantry fighting vehicles (IFV), and armoured personnel carriers (APC).
A military engineering vehicle is a vehicle built for construction work or for the transportation of combat engineers on the battlefield. These vehicles may be modified civilian equipment or purpose-built military vehicles. The first appearance of such vehicles coincided with the appearance of the first tanks, these vehicles were modified Mark V tanks for bridging and mine clearance. Modern military engineering vehicles are expected to fulfill numerous roles such as; bulldozer, crane, grader, excavator, dump truck, breaching vehicle, bridging vehicle, military ferry, amphibious crossing vehicle, and combat engineer section carrier.
The Kampfpanzer Leopard is a main battle tank designed by Porsche and manufactured by Krauss-Maffei in West Germany, first entering service in 1965. Developed in an era when HEAT warheads were thought to make conventional heavy armour of limited value, the Leopard design focused on effective firepower and mobility instead of heavy protection. It featured moderate armour, only effective against low caliber autocannons and heavy machine guns, giving it a high power-to-weight ratio. This, coupled with a modern suspension and drivetrain, gave the Leopard superior mobility and cross-country performance compared to most other main battle tanks of the era, only being rivaled by the French AMX-30 and Swedish Strv 103. The main armament of the Leopard consisted of a German license-built version of the British Royal Ordnance L7 105 mm rifled gun, one of the most effective and widespread tank guns of the era.
The M60 is an American second-generation main battle tank (MBT). It was officially standardized as the Tank, Combat, Full Tracked: 105-mm Gun, M60 in March 1959. Although developed from the M48 Patton, the M60 tank series was never officially christened as a Patton tank. It has been called a "product-improved descendant" of the Patton tank's design. The design similarities are evident comparing the original version of the M60 and the M48A2. The United States fully committed to the MBT doctrine in 1963, when the Marine Corps retired the last (M103) heavy tank battalion. The M60 tank series became America's primary main battle tank during the Cold War, reaching a production total of 15,000 M60s. Hull production ended in 1983, but 5,400 older models were converted to the M60A3 variant ending in 1990.
The Leopard 2 is a third generation German main battle tank (MBT). Developed by Krauss-Maffei in the 1970s, the tank entered service in 1979 and replaced the earlier Leopard 1 as the main battle tank of the West German army. Various iterations of the Leopard 2 continue to be operated by the armed forces of Germany, as well as 13 other European countries, and several non-European countries, including Canada, Chile, Indonesia, and Singapore. Some operating countries have licensed the Leopard 2 design for local production and domestic development.
The PT-91 Twardy is a Polish main battle tank. A development of the T-72M1, it entered service in 1995. The PT-91 was designed at the OBRUM and is produced by the Bumar Łabędy company, part of the Bumar Group, a Polish technical military consortium. Changes from the T-72M include a new dual-axis stabilized fire-control system, reactive armour, a more powerful engine, transmission and new automatic loader.
Tank classification is a taxonomy of identifying either the intended role or weight class of tanks. The classification by role was used primarily during the developmental stage of the national armoured forces, and referred to the doctrinal and force structure utility of the tanks based on design emphasis. The weight classification is used in the same way truck classification is used, and is intended to accommodate logistic requirements of the tanks.
The M104 Wolverine "Heavy Assault Bridge" is United States armored vehicle-launched bridge vehicle, designed to lay down a bridge in combat.
The M60 armored vehicle launched bridge (AVLB) is an armored vehicle based on the M60 Patton main battle tank's hull and used for the launching and retrieval of a 60-foot (18 m) scissors-type bridge. The AVLB consists of three major sections: the launcher, the vehicle hull, and the bridge. The M60 AVLB was introduced in 1963. This combat engineer vehicle was developed by the US Army Engineer Research & Development Laboratories under contract with General Dynamics to replace the previous M48 AVLB. It was designed to launch bridge for tanks and other wheeled combat vehicles across trenches and water obstacles in combat conditions. A total of 400 armored bridge launchers and bridges were built. 125 M60 AVLBs of all variants were constructed.
The MT-55A is an armoured vehicle-launched bridge (AVLB) tank, manufactured by ZŤS Martin in Slovakia. The AVLB is based on a T-55A medium tank chassis, with the turret detached and replaced by a special bridge launching equipment.
Armoured Vehicle Royal Engineers (AVRE), also known as Assault Vehicle Royal Engineers, is the title given to a series of armoured military engineering vehicles operated by the Royal Engineers (RE) for the purpose of protecting engineers during frontline battlefield operations.
During the Cold War, NATO and the Warsaw Pact both had large tank formations present in Europe.
The Vijayanta was a main battle tank built in India based on a licensed design of the Vickers Mk.1. The Vijayanta was the first indigenous tank of the Indian Army.
The M3 Amphibious Rig is a self-propelled, amphibious bridging vehicle and ferrying vehicle that is used for the projection of tanks and other vehicles across water obstacles.
The history and development of tanks in the Royal Canadian Armoured Corps can be broken down into smaller categories: their origin during World War I; the interwar period; World War II; the Cold War; and the modern era.
The M1074 Joint Assault Bridge System is an American armored military engineering vehicle based on the Abrams M1A1 main battle tank chassis. The M1074 was designed by Leonardo DRS for the U.S. Army and Marine Corps to provide deployable bridge capability for units engaged in military operations.