Anion-transporting ATPase | |||||||||
---|---|---|---|---|---|---|---|---|---|
Identifiers | |||||||||
Symbol | ArsA_ATPase | ||||||||
Pfam | PF02374 | ||||||||
Pfam clan | CL0023 | ||||||||
SCOP2 | 1f48 / SCOPe / SUPFAM | ||||||||
TCDB | 3.A.4 | ||||||||
|
ArsB | |||||||||
---|---|---|---|---|---|---|---|---|---|
Identifiers | |||||||||
Symbol | ArsB | ||||||||
Pfam | PF02040 | ||||||||
Pfam clan | CL0182 | ||||||||
InterPro | IPR000802 | ||||||||
TCDB | 3.A.4 | ||||||||
|
ArsC | |||||||||
---|---|---|---|---|---|---|---|---|---|
![]() yffb (pa3664) protein | |||||||||
Identifiers | |||||||||
Symbol | ArsC | ||||||||
Pfam | PF03960 | ||||||||
Pfam clan | CL0172 | ||||||||
InterPro | IPR006660 | ||||||||
SCOP2 | 1i9d / SCOPe / SUPFAM | ||||||||
|
ArsD | |||||||||
---|---|---|---|---|---|---|---|---|---|
Identifiers | |||||||||
Symbol | ArsD | ||||||||
Pfam | PF06953 | ||||||||
Pfam clan | CL0172 | ||||||||
InterPro | IPR010712 | ||||||||
|
ArsR | |||||||||
---|---|---|---|---|---|---|---|---|---|
Identifiers | |||||||||
Symbol | ArsR | ||||||||
Pfam | PF09824 | ||||||||
Pfam clan | CL0123 | ||||||||
InterPro | IPR018334 | ||||||||
SCOP2 | a.4.5.5 / SCOPe / SUPFAM | ||||||||
|
In molecular biology, the ars operon is an operon found in several bacterial taxon. It is required for the detoxification of arsenate, arsenite, and antimonite. [1] This system transports arsenite and antimonite out of the cell. The pump is composed of two polypeptides, the products of the arsA and arsB genes. This two-subunit enzyme produces resistance to arsenite and antimonite. Arsenate, however, must first be reduced to arsenite before it is extruded. A third gene, arsC, expands the substrate specificity to allow for arsenate pumping and resistance. ArsC is an approximately 150-residue arsenate reductase that uses reduced glutathione (GSH) to convert arsenate to arsenite with a redox active cysteine residue in the active site. ArsC forms an active quaternary complex with GSH, arsenate, and glutaredoxin 1 (Grx1). The three ligands must be present simultaneously for reduction to occur. [2]
ArsA and ArsB form an anion-translocating ATPase. [3] The ArsB protein is distinguished by its overall hydrophobic character, in keeping with its role as a membrane-associated channel. Sequence analysis reveals the presence of 13 putative transmembrane (TM) regions.
The arsC protein structure has been solved. [4] It belongs to the thioredoxin superfamily fold which is defined by a beta-sheet core surrounded by alpha-helices. The active cysteine residue of ArsC is located in the loop between the first beta-strand and the first helix, which is also conserved in the Spx protein and its homologues.
The arsC family also comprises the Spx proteins which are Gram-positive bacterial transcription factors that regulate the transcription of multiple genes in response to disulphide stress. [5]
ArsD is a trans-acting repressor of the arsRDABC operon that confers resistance to arsenicals and antimonials in Escherichia coli. It possesses two-pairs of vicinal cysteine residues, Cys(12)-Cys(13) and Cys(112)-Cys(113), that potentially form separate binding sites for the metalloids that trigger dissociation of ArsD from the operon. However, as a homodimer it has four vicinal cysteine pairs. [6] The ArsD family consists of several bacterial arsenical resistance operon trans-acting repressor ArsD proteins.
ArsR is a trans-acting regulatory protein. It acts as a repressor on the arsRDABC operon when no arsenic is present in the cell. When arsenic is present in the cell ArsR will lose affinity for the operator and RNA polymerase can transcribe the arsDCAB genes. [7] [8] ArsD and ArsR work together to regulate the ars operon. [9]
arsenic chaperone, ArsD, encoded by the arsRDABC operon of Escherichia coli. ArsD transfers trivalent metalloids to ArsA, the catalytic subunit of an As(III)/Sb(III) efflux pump. Interaction with ArsD increases the affinity of ArsA for arsenite, thus increasing its ATPase activity at lower concentrations of arsenite and enhancing the rate of arsenite extrusion. [10]
Ribonucleotide reductase (RNR), also known as ribonucleotide diphosphate reductase (rNDP), is an enzyme that catalyzes the formation of deoxyribonucleotides from ribonucleotides. It catalyzes this formation by removing the 2'-hydroxyl group of the ribose ring of nucleoside diphosphates. This reduction produces deoxyribonucleotides. Deoxyribonucleotides in turn are used in the synthesis of DNA. The reaction catalyzed by RNR is strictly conserved in all living organisms. Furthermore, RNR plays a critical role in regulating the total rate of DNA synthesis so that DNA to cell mass is maintained at a constant ratio during cell division and DNA repair. A somewhat unusual feature of the RNR enzyme is that it catalyzes a reaction that proceeds via a free radical mechanism of action. The substrates for RNR are ADP, GDP, CDP and UDP. dTDP is synthesized by another enzyme from dTMP.
Vitamin K epoxide reductase (VKOR) is an enzyme that reduces vitamin K after it has been oxidised in the carboxylation of glutamic acid residues in blood coagulation enzymes. VKOR is a member of a large family of predicted enzymes that are present in vertebrates, Drosophila, plants, bacteria and archaea. In some plant and bacterial homologues, the VKOR domain is fused with domains of the thioredoxin family of oxidoreductases.
The adaptive response is a form of direct DNA repair in E. coli that protects DNA from damage by external agents or by errors during replication. It is initiated against alkylation, particularly methylation, of guanine or thymine nucleotides or phosphate groups on the sugar-phosphate backbone of DNA. Under sustained exposure to low-level treatment with alkylating mutagens, E. coli can adapt to the presence of the mutagen, rendering subsequent treatment with high doses of the same agent less effective. This mechanism has four related genes, also known as “SOS genes”: ada, alkA, alkB, and aidB, each one working in specific residues, all regulated by ada protein.
Amino acid synthesis is the set of biochemical processes by which the amino acids are produced. The substrates for these processes are various compounds in the organism's diet or growth media. Not all organisms are able to synthesize all amino acids. For example, humans can only synthesize 11 of the 20 standard amino acids, and in time of accelerated growth, histidine can be considered an essential amino acid.
Arsenate reductase (glutaredoxin) (EC 1.20.4.1) is an enzyme that catalyzes the chemical reaction
In enzymology, an arsenite-transporting ATPase (EC 3.6.3.16) is an enzyme that catalyzes the chemical reaction
In enzymology, a serine O-acetyltransferase is an enzyme that catalyzes the chemical reaction
ATPase ASNA1 also known as arsenical pump-driving ATPase and arsenite-stimulated ATPase is an enzyme that in humans is encoded by the ASNA1 gene.
In molecular biology, autophagy related 3 (Atg3) is the E2 enzyme for the LC3 lipidation process. It is essential for autophagy. The super protein complex, the Atg16L complex, consists of multiple Atg12-Atg5 conjugates. Atg16L has an E3-like role in the LC3 lipidation reaction. The activated intermediate, LC3-Atg3 (E2), is recruited to the site where the lipidation takes place.
DsbC is a prokaryotic disulfide bond isomerase. The formation of native disulfide bonds play an important role in the proper folding of proteins and stabilize tertiary structures of the protein. DsbC is one of 6 proteins in the Dsb family in prokaryotes. The other proteins are DsbA, DsbB, DsbD, DsbE and DsbG. These enzymes work in tandem with each other to form disulfide bonds during the expression of proteins. DsbC and DsbG act as proofreaders of the disulfide bonds that are formed. They break non-native disulfide bonds that were formed and act as chaperones for the formation of native disulfide bonds. The isomerization of disulfide bonds occurs in the periplasm.
In molecular biology, the LuxR-type DNA-binding HTH domain is a DNA-binding, helix-turn-helix (HTH) domain of about 65 amino acids. It is present in transcription regulators of the LuxR/FixJ family of response regulators. The domain is named after Vibrio fischeri luxR, a transcriptional activator for quorum-sensing control of luminescence. LuxR-type HTH domain proteins occur in a variety of organisms. The DNA-binding HTH domain is usually located in the C-terminal region of the protein; the N-terminal region often containing an autoinducer-binding domain or a response regulatory domain. Most luxR-type regulators act as transcription activators, but some can be repressors or have a dual role for different sites. LuxR-type HTH regulators control a wide variety of activities in various biological processes.
In molecular biology, the glutaredoxin 2 family is a family of bacterial glutaredoxins. Unlike other glutaredoxins, glutaredoxin 2 (Grx2) cannot reduce ribonucleotide reductase. Grx2 has significantly higher catalytic activity in the reduction of mixed disulphides with glutathione (GSH) compared with other glutaredoxins. The active site residues (Cys9-Pro10-Tyr11-Cys12, in Escherichia coli Grx2, which are found at the interface between the N- and C-terminal domains are identical to other glutaredoxins, but there is no other similarity between glutaredoxin 2 and other glutaredoxins. Grx2 is structurally similar to glutathione-S-transferases, but there is no obvious sequence similarity. The inter-domain contacts are mainly hydrophobic, suggesting that the two domains are unlikely to be stable on their own. Both domains are needed for correct folding and activity of Grx2. It is thought that the primary function of Grx2 is to catalyse reversible glutathionylation of proteins with GSH in cellular redox regulation including the response to oxidative stress. These enzymes are not related to GLRX2.
The gua operon is responsible for regulating the synthesis of guanosine mono phosphate (GMP), a purine nucleotide, from inosine monophosphate. It consists of two structural genes guaB (encodes for IMP dehydrogenase or and guaA apart from the promoter and operator region.
The nik operon is an operon required for uptake of nickel ions into the cell. It is present in many bacteria, but has been extensively studied in Helicobacter pylori. Nickel is an essential nutrient for many microorganisms, where it participates in a variety of cellular processes. However, excessive levels of nickel ions in cell can be fatal to the cell. Nickel ion concentration in the cell is regulated through the nik operon.
Arsenate-reducing bacteria are bacteria which reduce arsenates. Arsenate-reducing bacteria are ubiquitous in arsenic-contaminated groundwater (aqueous environment). Arsenates are salts or esters of arsenic acid (H3AsO4), consisting of the ion AsO43−. They are moderate oxidizers that can be reduced to arsenites and to arsine. Arsenate can serve as a respiratory electron acceptor for oxidation of organic substrates and H2S or H2. Arsenates occur naturally in minerals such as adamite, alarsite, legrandite, and erythrite, and as hydrated or anhydrous arsenates. Arsenates are similar to phosphates since arsenic (As) and phosphorus (P) occur in group 15 (or VA) of the periodic table. Unlike phosphates, arsenates are not readily lost from minerals due to weathering. They are the predominant form of inorganic arsenic in aqueous aerobic environments. On the other hand, arsenite is more common in anaerobic environments, more mobile, and more toxic than arsenate. Arsenite is 25–60 times more toxic and more mobile than arsenate under most environmental conditions. Arsenate can lead to poisoning, since it can replace inorganic phosphate in the glyceraldehyde-3-phosphate --> 1,3-biphosphoglycerate step of glycolysis, producing 1-arseno-3-phosphoglycerate instead. Although glycolysis continues, 1 ATP molecule is lost. Thus, arsenate is toxic due to its ability to uncouple glycolysis. Arsenate can also inhibit pyruvate conversion into acetyl-CoA, thereby blocking the TCA cycle, resulting in additional loss of ATP.
Phenylarsine oxide (PAO or PhAsO) is an organometallic compound with the empirical formula C6H5AsO. It contains a phenyl group and an oxygen atom both bonded to an arsenic atom.
Arsenite-antimonite transporters are membrane transporters that pump arsenite or antimonite out of a cell. Antimonite is the salt of antimony and has been found to significantly impact the toxicity of arsenite. The similar structure of As(III) and Sb(III) makes it plausible that certain transporters function in the efflux of both substrates. Arsenic efflux transporters exist in almost every organism and serve to remove this toxic compound from the cell.
Arsenite resistance (Ars) efflux pumps of bacteria may consist of two proteins, ArsB and ArsA, or of one protein. ArsA proteins have two ATP binding domains and probably arose by a tandem gene duplication event. ArsB proteins all possess twelve transmembrane spanners and may also have arisen by a tandem gene duplication event. Structurally, the Ars pumps resemble ABC-type efflux pumps, but there is no significant sequence similarity between the Ars and ABC pumps. When only ArsB is present, the system operates by a pmf-dependent mechanism, and consequently belongs in TC subclass 2.A. When ArsA is also present, ATP hydrolysis drives efflux, and consequently the system belongs in TC subclass 3.A. ArsB therefore appears twice in the TC system but ArsA appears only once. These pumps actively expel both arsenite and antimonite.
The arsenical resistance-3 (ACR3) family is a member of the BART superfamily. Based on operon analyses, ARC3 homologues may function either as secondary carriers or as primary active transporters, similarly to the ArsB and ArsAB families. In the latter case ATP hydrolysis again energizes transport. ARC3 homologues transport the same anions as ArsA/AB homologues, though ArsB homologues are members of the IT Superfamily and homologues of the ARC3 family are within the BART Superfamily suggesting they may not be evolutionarily related.
Members of the H+, Na+-translocating Pyrophosphatase (M+-PPase) Family (TC# 3.A.10) are found in the vacuolar (tonoplast) membranes of higher plants, algae, and protozoa, and in both bacteria and archaea. They are therefore ancient enzymes.