Asterochloris

Last updated

Asterochloris
Scientific classification OOjs UI icon edit-ltr.svg
Clade: Viridiplantae
Division: Chlorophyta
Class: Trebouxiophyceae
Order: Trebouxiales
Family: Trebouxiaceae
Genus: Asterochloris
Tscherm.-Woess, 1980
Type species
Asterochloris phycobiontica
Tscherm.-Woess, 1980

Asterochloris is a genus of green algae in the family Trebouxiophyceae. It is a common photobiont in lichen, occurring in the thalli of more than 20 lichen genera worldwide. Asterochloris is distinguishable from the morphologically similar genus Trebouxia , primarily due to its deeply lobed chloroplast, the placement of the chloroplast along the cell's periphery before the initiation of zoospore or aplanospore formation, and its tendency to primarily reproduce asexually through the production of aplanospores.

Contents

Taxonomy

The genus was circumscribed in 1980 by Elisabeth Tschermak-Woess, with Asterochloris phycobiontica assigned as the type species. She differentiated it from the related genus Trebouxia by differences in chloroplast morphology. [1] Later molecular research showed that Trebouxia was paraphyletic, [2] [3] and that some Trebouxia species were closely related to genus Asterochloris. [4] [5] [6] In 2010, Škaloud and Peksa proposed to split the genus Trebouxia and formally delineate genus Asterochloris. [7]

Within the broader classification of green algae, Asterochloris belongs to the order Trebouxiales within the class Trebouxiophyceae. Current research suggests that several cryptic species within the genus still await formal description. [8]

Description

Asterochloris is characterised by its unique cellular structure and reproduction methods. Each Asterochloris cell is spherical and exists in isolation, containing a single nucleus. The cell wall is thin and firm, lacking the gelatinous texture often found in similar organisms. Inside, there is a single chloroplast—the component responsible for photosynthesis—shaped like a thick cup with edges that resemble the rays of a star, and it may contain one or multiple pyrenoids. Pyrenoids are specialised structures within the chloroplast that play a crucial role in the synthesis of starch. These pyrenoids are encircled by grains of starch, suggesting an active photosynthetic machinery. [1]

Additionally, the cells of Asterochloris frequently contain clear, oily droplets, which are likely used as energy storage. Unlike some algae that reproduce through the production of autosporous (self-generating) spores, Asterochloris propagates through the release of zoospores or aplanospores. These spores are produced through successive cell divisions. [1]

In 2015, Skaloud and Peksa updated the description of Asterochloris, providing more detailed insights into its cellular features and reproductive behaviours. They observed that, in addition to being spherical, cells of Asterochloris can also be oval or pear-shaped, and the cell wall, while generally thin, may have localized areas of thickening. The nucleus of each cell is positioned along the side within a large fold of the chloroplast, a green structure critical for photosynthesis that has a star-like shape with lobes extending to the cell's edge. Central to the chloroplast are one to several pyrenoids, structures essential for starch production, surrounded by a noticeable layer of starch, indicating the cell's active energy production. [9]

Skaloud and Peksa further detailed that before the algae reproduce asexually—either through the release of swimming spores (zoospores) or non-swimming spores (aplanospores)—the chloroplast changes shape, flattening against the cell wall. The reproduction process typically results in a large number of spores, ranging from 64 to 128, and in rare cases, the algae can produce 2 to 8 self-replicating spores (autospores). They also noted that zoospores are unique in their appearance, lacking a protective covering, being flattened from back to front, and equipped with two forward-facing flagella for movement. These zoospores carry their green chloroplast at the back, the nucleus in the middle or toward the back, and lack a clear visual receptor (stigma). When zoospores are released, they initially swim together as a group, connected at the back, before dispersing. Skaloud and Peksa also mentioned that sexual reproduction occurs but is rare, involving the merging of two similar (isogamous) gametes. [9]

Habitat and distribution

Asterochloris is a widely distributed and cosmopolitan genus. It is a common photobiont in lichen, occurring in the thalli of more than 20 lichen genera worldwide. [9] The genus associates primarily with mycobionts from the families Cladoniaceae and Stereocaulaceae. [8]

While primarily known as a lichen symbiont, free-living populations of Asterochloris have been documented in various environments. These include soil communities, mountain tundra regions, and on tree bark in sub-Mediterranean regions of Slovenia and Italy. In an unusual habitat, the genus has also been detected on the hair of sloths in South and Central America. [8]

Species

Related Research Articles

<span class="mw-page-title-main">Chlorophyceae</span> Class of green algae

The Chlorophyceae are one of the classes of green algae, distinguished mainly on the basis of ultrastructural morphology. They are usually green due to the dominance of pigments chlorophyll a and chlorophyll b. The chloroplast may be discoid, plate-like, reticulate, cup-shaped, spiral- or ribbon-shaped in different species. Most of the members have one or more storage bodies called pyrenoids located in the chloroplast. Pyrenoids contain protein besides starch. Some green algae may store food in the form of oil droplets. They usually have a cell wall made up of an inner layer of cellulose and outer layer of pectose.

<span class="mw-page-title-main">Chlorophyta</span> Phylum of green algae

Chlorophyta is a division of green algae informally called chlorophytes.

<span class="mw-page-title-main">Trebouxiophyceae</span> Class of algae

The Trebouxiophyceae, also known as trebouxiophytes, are a class of green algae, in the division Chlorophyta. Members of this class are single-celled, colonial, or multicellular and are found in freshwater or terrestrial habitats worldwide. Many taxa in the Trebouxiophyceae form symbiotic relationships with other organisms; in particular, the majority of phycobionts within lichens are trebouxiophytes. A number of taxa have also lost the ability to photosynthesize, and have evolved to become parasitic; examples include Prototheca and Helicosporidium.

<span class="mw-page-title-main">Selenastraceae</span> Family of algae

Selenastraceae is a family of green algae in the order Sphaeropleales. Members of this family are common components of the phytoplankton in freshwater habitats worldwide. A few species have been found in brackish and marine habitats, such as in the Baltic Sea.

Desmococcus is a genus of green algae in the family Stichococcaceae. It is a subaerial genus of algae with a cosmopolitan distribution.

Dictyochloris is a genus of green algae in the class Chlorophyceae. It is the sole genus of the family Dictyochloridaceae. It is commonly found in terrestrial and subaerial habitats.

Dictyochloropsis is a genus of unicellular green alga of the phylum Chlorophyta. This genus consists of free-living algae which have a reticulate (net-like) chloroplast that varies slightly in morphology between species, and that when mature always lacks a pyrenoid. Dictyochloropsis is asexual and reproduces using autospores.

<i>Elliptochloris</i> Genus of algae

Elliptochloris is a genus of green algae in the order Prasiolales. Species of this genus are common and found in a variety of terrestrial habitats such as soils. Some species in the genus are photobiont partners in lichens. One species, E. marina, is a symbiont within two species of sea anemone, Anthopleura elegantissima and A. xanthogrammica. It seems to have a worldwide distribution.

<i>Geminella</i> (alga) Genus of algae

Geminella is a genus of green algae in the phylum Chlorophyta. Once considered part of the order Ulotrichales, molecular phylogenetics have shown that Geminella and related genera form a well-supported clade within the class Trebouxiophyceae.

<i>Microthamnion</i> Genus of algae

Microthamnion is a genus of green algae in the family Microthamniaceae. It is found in freshwater habitats around the world, preferably with low levels of pollution; it is typically attached to solid substrates.

<i>Trebouxia</i> Genus of algae

Trebouxia is a unicellular green alga. It is a photosynthetic organism that can exist in almost all habitats found in polar, tropical, and temperate regions. It can either exist in a symbiotic relationship with fungi in the form of lichen or it can survive independently as a free-living organism alone or in colonies. Trebouxia is the most common photobiont in extant lichens. It is a primary producer of marine, freshwater and terrestrial ecosystems. It uses carotenoids and chlorophyll a and b to harvest energy from the sun and provide nutrients to various animals and insects.

Symbiochloris reticulata is a species of green alga in the Trebouxiales. It is a known as a photobiont with several lichen species, like Lobaria pulmonaria, but also as a free-living soil alga as well. Phylogenetic analysis of rRNA sequence data revealed that the species shares a sister group relationship with two other green algae that lack motile stages, Chlorella saccharophila and C. luteoviridis.

<span class="mw-page-title-main">Lichen anatomy and physiology</span> Structure of lichens

Lichen anatomy and physiology is very different from the anatomy and physiology of the fungus and/or algae and/or cyanobacteria that make up the lichen when growing apart from the lichen, either naturally, or in culture. The fungal partner is called the mycobiont. The photosynthetic partner, algae or cyanobacteria, is called the photobiont. The body of a lichens that does not contain reproductive parts of the fungus is called the thallus. The thallus is different from those of either the fungus or alga growing separately. The fungus surrounds the algal cells, often enclosing them within complex fungal tissues unique to lichen associations. In many species the fungus penetrates the algal cell wall, forming penetration pegs or haustoria similar to those produced by pathogenic fungi. Lichens are capable of surviving extremely low levels of water content (poikilohydric). However, the re-configuration of membranes following a period of dehydration requires several minutes at least.

<span class="mw-page-title-main">Koliellaceae</span> Family of algae

Koliellaceae is a family of green algae in the order Prasiolales.

Elisabeth Tschermak-Woess was an Austrian University lecturer, cytologist, and phycologist who worked with lichen photobionts. In 1994, Tschermak-Woess was awarded the Acharius Medal for her lifetime contributions to lichenology. She had a Festschrift dedicated to her in 1988, in the journal Plant Systematics and Evolution. Lichen taxa that have been named after Tschermak-Woess include the genus Woessia and the species Asterochloris woessiae.

Trebouxia decolorans is a widespread and common symbiotic species of green alga that is found in association with different species of lichen-forming fungi. Some lichens in which it is the photobiont partner are Xanthoria parietina and Anaptychia ciliaris.

Trebouxia gelatinosa is a common symbiotic species of green alga in the family Trebouxiaceae. Formally described as new to science in 1975, it is usually found in association with different species of lichen-forming fungi.

Asterochloris italiana is a species of green alga in the family Trebouxiaceae. It was first formally described by the phycologist Patricia A. Archibald in 1975, as a species of Trebouxia. It was transferred to the genus Asterochloris in 2010.

<i>Elliptochloris bilobata</i> Species of green alga

Elliptochloris bilobata is a species of green alga in the order Prasiolales. First described in 1980, it is the type species of the genus Elliptochloris. The microscopic alga has distinctive ellipsoid cells containing a unique bilobed chloroplast, and reproduces both through autospores and rod-shaped spores. Though originally discovered as a photobiont within the lichen Catolechia wahlenbergii in the Austrian Alps, it has since been found living freely across Europe, Israel, and Antarctica. The species grows on various surfaces including soil, rock, and tree bark, and is known for its ability to grow in both natural and human-modified environments.

Trebouxia flava is a species of green alga in the family Trebouxiaceae. First described in 1975 by Patricia Ann Archibald, it features spherical cells containing multiple nuclei and a single chloroplast with a small pyrenoid. The species is characterized by its distinctive dull-shiny, sulphurous yellow cultures, which differ from the typical shiny yellow-green appearance of most other Trebouxia species. It can reproduce both through motile zoospores and non-motile aplanospores, and was originally isolated from the foliose lichen species Physconia pulverulenta.

References

  1. 1 2 3 Tschermak-Woess, Elisabeth (1980). "Asterochloris phycobiontica, gen. et spec., nov., der Phycobiont der Flechte Varicellaria carneonivea". Plant Systematics and Evolution (in German). 135 (3–4): 279–294. doi:10.1007/BF00983192.
  2. Friedl, Thomas; Zeltner, Cornelia (1994). "Assessing the relationships of some coccoid green lichen algae and the Microthamniales (Chlorophyta) with 18s ribosomal RNA gene sequence comparisons 1". Journal of Phycology. 30 (3): 500–506. Bibcode:1994JPcgy..30..500F. doi:10.1111/j.0022-3646.1994.00500.x.
  3. Friedl, T.; Rokitta, C. (1997). "Species relationships in the lichen alga Trebouxia (Chlorophyta, Trebouxiophyceae): molecular phylogenetic analyses of nuclear-encoded large subunit rRNA gene sequences". Symbiosis. 23: 125–148.
  4. Helms, Gert; Friedl, Thomas; Rambold, Gerhard; Mayrhofer, Helmut (2001). "Identification of photobionts from the lichen family Physciaceae using algal-specific ITS rDNA sequencing". The Lichenologist. 33 (1): 73–86. doi:10.1006/lich.2000.0298.
  5. Piercey-Normore, Michele D.; DePriest, Paula T. (2001). "Algal switching among lichen symbioses". American Journal of Botany. 88 (8): 1490–1498. doi:10.2307/3558457. JSTOR   3558457. PMID   21669682.
  6. Škaloud, Pavel; Peksa, Ondřej (2008). "Comparative study of chloroplast morphology and ontogeny in Asterochloris (Trebouxiophyceae, Chlorophyta)" (PDF). Biologia. 63 (6): 873–880. Bibcode:2008Biolg..63..873S. doi:10.2478/s11756-008-0115-y.
  7. Skaloud, Pavel; Peksa, Ondrej (2010). "Evolutionary inferences based on ITS rDNA and actin sequences reveal extensive diversity of the common lichen alga Asterochloris (Trebouxiophyceae, Chlorophyta)" (PDF). Molecular Phylogenetics and Evolution. 54 (1): 36–46. doi:10.1016/j.ympev.2009.09.035. PMID   19853051.
  8. 1 2 3 Veselá, Veronika; Malavasi, Veronica; Škaloud, Pavel (2024). "A synopsis of green-algal lichen symbionts with an emphasis on their free-living lifestyle". Phycologia. 63 (3): 317–338. doi: 10.1080/00318884.2024.2325329 .
  9. 1 2 3 4 5 6 7 8 9 Škaloud, Pavel; Steinová, Jana; Řídká, Tereza; Vančurová, Lucie; Peksa, Ondřej (2015). "Assembling the challenging puzzle of algal biodiversity: species delimitation within the genus Asterochloris (Trebouxiophyceae, Chlorophyta)". Journal of Phycology. 51 (3): 507–527. Bibcode:2015JPcgy..51..507S. doi:10.1111/jpy.12295. PMID   26986666.
  10. 1 2 3 Kim, Jong Im; Kim, Yong Jun; Nam, Seung Won; So, Jae Eun; Hong, Soon Gyu; Choi, Han-Gu; Shin, Woongghi (2020). "Taxonomic study of three new Antarctic Asterochloris (Trebouxiophyceae) based on morphological and molecular data". Algae. 35 (1): 17–32. doi: 10.4490/algae.2020.35.2.23 .
  11. Moya, Patricia; Škaloud, Pavel; Chiva, Salvador; García-Breijo, Francisco J.; Reig-Armiñana, José; Vančurová, Lucie; Barreno, Eva (2015). "Molecular phylogeny and ultrastructure of the lichen microalga Asterochloris mediterranea sp. nov. from Mediterranean and Canary Islands ecosystems". International Journal of Systematic and Evolutionary Microbiology. 65 (Pt_6): 1838–1854. doi:10.1099/ijs.0.000185. PMID   25757706.
  12. Kim, Jong Im; Nam, Seung Won; So, Jae Eun; Hong, Soon Gyu; Choi, Han-Gu; Shin, Woongghi (2017). "Asterochloris sejongensis sp. nov. (Trebouxiophyceae, Chlorophyta) from King George Island, Antarctica" (PDF). Phytotaxa. 295 (1): 60–70. doi:10.11646/phytotaxa.295.1.5.