Asterosoma

Last updated

Asterosoma
Temporal range: Paleozoic
Scientific classification OOjs UI icon edit-ltr.svg
Kingdom: Plantae
Genus: Asterosoma
Schimper, 1868
Species
  • Asterosoma radiciforme
  • Asterosoma ludwigae

Asterosoma is an ichnogenus of trace fossils typically found in marine sedimentary rocks. These trace fossils are recognized by their characteristic radiating burrow systems, which often resemble a star-like pattern, hence the name Asterosoma (from Greek aster meaning "star" and soma meaning "body"). These burrows are believed to have been created by organisms living in the sediment, possibly deposit-feeding worms, during the Paleozoic era. [1] [2]

Contents

Description

Asterosoma trace fossils are distinguished by their radial symmetry and complex burrow structures. The burrows often have a central tube with radiating arms that can be straight or curved, depending on the sedimentary environment. The morphology of Asterosoma suggests a behavioral pattern where the trace-making organism moved within the sediment to feed or escape predation. [3]

Geological significance

Asterosoma is a valuable indicator of paleoenvironmental conditions, particularly in shallow marine settings. These trace a fossils are commonly found in transgressive–regressive cycles, where they can provide insights into the sedimentary dynamics and the behavior of ancient marine life. The presence of Asterosoma in the rock record can help geologists reconstruct past environments and understand the biological activity that took place during the deposition of the host sediments. [4] [5]

Fossil record

Asterosoma trace fossils have been recorded in various locations worldwide, with notable occurrences in Devonian strata of the Paraná Basin, Brazil, and other Paleozoic formations. These fossils are often associated with other ichnogenera, contributing to a broader understanding of the ecological interactions within ancient sedimentary environments. [6] [7]

See also

Related Research Articles

<span class="mw-page-title-main">Shale</span> Fine-grained, clastic sedimentary rock

Shale is a fine-grained, clastic sedimentary rock formed from mud that is a mix of flakes of clay minerals (hydrous aluminium phyllosilicates, e.g., kaolin, Al2Si2O5(OH)4) and tiny fragments (silt-sized particles) of other minerals, especially quartz and calcite. Shale is characterized by its tendency to split into thin layers (laminae) less than one centimeter in thickness. This property is called fissility. Shale is the most common sedimentary rock.

<span class="mw-page-title-main">Sedimentary rock</span> Rock formed by the deposition and cementation of particles

Sedimentary rocks are types of rock that are formed by the accumulation or deposition of sediments, ie. mineral or organic particles, at Earth's surface, followed by cementation. Sedimentation is the collective name for processes that cause these particles to settle in place. The particles that form a sedimentary rock are called sediment, and may be composed of geological detritus (minerals) or biological detritus. The geological detritus originated from weathering and erosion of existing rocks, or from the solidification of molten lava blobs erupted by volcanoes. The geological detritus is transported to the place of deposition by water, wind, ice or mass movement, which are called agents of denudation. Biological detritus was formed by bodies and parts of dead aquatic organisms, as well as their fecal mass, suspended in water and slowly piling up on the floor of water bodies. Sedimentation may also occur as dissolved minerals precipitate from water solution.

<span class="mw-page-title-main">Trace fossil</span> Geological record of biological activity

A trace fossil, also known as an ichnofossil, is a fossil record of biological activity by lifeforms but not the preserved remains of the organism itself. Trace fossils contrast with body fossils, which are the fossilized remains of parts of organisms' bodies, usually altered by later chemical activity or by mineralization. The study of such trace fossils is ichnology - the work of ichnologists.

<span class="mw-page-title-main">Chitinozoan</span> Group of marine microfossils

Chitinozoa are a group of flask-shaped, organic walled marine microfossils produced by an as yet unknown organism. Common from the Ordovician to Devonian periods, the millimetre-scale organisms are abundant in almost all types of marine sediment across the globe. This wide distribution, and their rapid pace of evolution, makes them valuable biostratigraphic markers.

<span class="mw-page-title-main">Polystrate fossil</span> Creationist term for a fossil that extends through more than one geological stratum

A polystrate fossil is a fossil of a single organism that extends through more than one geological stratum. The word polystrate is not a standard geological term. This term is typically found in creationist publications.

<span class="mw-page-title-main">Taconic orogeny</span> Mountain-building period that affected most of New England

The Taconic orogeny was a mountain building period that ended 440 million years ago (Ma) and affected most of modern-day New England. A great mountain chain formed from eastern Canada down through what is now the Piedmont of the east coast of the United States. As the mountain chain eroded in the Silurian and Devonian periods, sediment spread throughout the present-day Appalachians and midcontinental North America.

<span class="mw-page-title-main">Carbonate platform</span> Sedimentary body with topographic relief composed of autochthonous calcareous deposits

A carbonate platform is a sedimentary body which possesses topographic relief, and is composed of autochthonic calcareous deposits. Platform growth is mediated by sessile organisms whose skeletons build up the reef or by organisms which induce carbonate precipitation through their metabolism. Therefore, carbonate platforms can not grow up everywhere: they are not present in places where limiting factors to the life of reef-building organisms exist. Such limiting factors are, among others: light, water temperature, transparency and pH-Value. For example, carbonate sedimentation along the Atlantic South American coasts takes place everywhere but at the mouth of the Amazon River, because of the intense turbidity of the water there. Spectacular examples of present-day carbonate platforms are the Bahama Banks under which the platform is roughly 8 km thick, the Yucatan Peninsula which is up to 2 km thick, the Florida platform, the platform on which the Great Barrier Reef is growing, and the Maldive atolls. All these carbonate platforms and their associated reefs are confined to tropical latitudes. Today's reefs are built mainly by scleractinian corals, but in the distant past other organisms, like archaeocyatha or extinct cnidaria were important reef builders.

<i>Treptichnus</i> Preserved burrow of an animal

Treptichnus is the preserved burrow of an animal. As such, it is regarded as the earliest widespread complex trace fossil. Its earliest appearance, around 542 million years ago (mya), which was contemporaneous with the last of the Ediacaran biota, is used to help define the dividing line, considered geologically at 541 mya, between the Ediacaran and Cambrian periods. It is last seen in the fossil record during the Cenomanian.

Trace fossils are classified in various ways for different purposes. Traces can be classified taxonomically, ethologically, and toponomically, that is, according to their relationship to the surrounding sedimentary layers. Except in the rare cases where the original maker of a trace fossil can be identified with confidence, phylogenetic classification of trace fossils is an unreasonable proposition.

The geology of Illinois includes extensive deposits of marine sedimentary rocks from the Palaeozoic, as well as relatively minor contributions from the Mesozoic and Cenozoic. Ice age glaciation left a wealth of glacial topographic features throughout the state.

<span class="mw-page-title-main">Bioclast</span>

Bioclasts are skeletal fossil fragments of once living marine or land organisms that are found in sedimentary rocks laid down in a marine environment—especially limestone varieties around the globe, some of which take on distinct textures and coloration from their predominate bioclasts—that geologists, archaeologists and paleontologists use to date a rock strata to a particular geological era.

<i>Skolithos</i> Trace fossil

Skolithos is a common trace fossil ichnogenus that is, or was originally, an approximately vertical cylindrical burrow with a distinct lining. It was produced globally by a variety of organisms, mostly in shallow marine environments, and appears as linear features in sedimentary rocks.

<span class="mw-page-title-main">Beacon Supergroup</span>

The Beacon Supergroup is a geological formation exposed in Antarctica and deposited from the Devonian to the Triassic. The unit was originally described as either a formation or sandstone, and upgraded to group and supergroup as time passed. It contains a sandy member known as the Beacon Heights Orthoquartzite.

<span class="mw-page-title-main">Shallow water marine environment</span>

Shallow water marine environment refers to the area between the shore and deeper water, such as a reef wall or a shelf break. This environment is characterized by oceanic, geological and biological conditions, as described below. The water in this environment is shallow and clear, allowing the formation of different sedimentary structures, carbonate rocks, coral reefs, and allowing certain organisms to survive and become fossils.

<i>Chondrites</i> (genus) Trace fossil

Chondrites is a trace fossil ichnogenus, preserved as small branching burrows of the same diameter that superficially resemble the roots of a plant. The origin of these structures is currently unknown. Chondrites is found in marine sediments from the Cambrian period of the Paleozoic onwards. It is especially common in sediments that were deposited in reduced-oxygen environments.

One of the major depositional strata in the Himalaya is the Lesser Himalayan Strata from the Paleozoic to Mesozoic eras. It had a quite different marine succession during the Paleozoic, as most parts of it are sparsely fossiliferous or even devoid of any well-defined fossils. Moreover, it consists of many varied lithofacies, making correlation work more difficult. This article describes the major formations of the Paleozoic – Mesozoic Lesser Himalayan Strata, including the Tal Formation, Gondwana Strata, Singtali Formation and Subathu Formation.

The geology of Guinea-Bissau is oldest in the east and becomes younger toward the west, with sediments from the past 66 million years nearer the coast. Some rock units in the northeast are as much as 680 million years old and throughout the geologic past Guinea-Bissau was influenced by the Mauritanide Belt orogeny and was submerged or partially submerged as a marine shelf or river delta for most of its existence.

<span class="mw-page-title-main">Geology of Morocco</span>

The geology of Morocco formed beginning up to two billion years ago, in the Paleoproterozoic and potentially even earlier. It was affected by the Pan-African orogeny, although the later Hercynian orogeny produced fewer changes and left the Maseta Domain, a large area of remnant Paleozoic massifs. During the Paleozoic, extensive sedimentary deposits preserved marine fossils. Throughout the Mesozoic, the rifting apart of Pangaea to form the Atlantic Ocean created basins and fault blocks, which were blanketed in terrestrial and marine sediments—particularly as a major marine transgression flooded much of the region. In the Cenozoic, a microcontinent covered in sedimentary rocks from the Triassic and Cretaceous collided with northern Morocco, forming the Rif region. Morocco has extensive phosphate and salt reserves, as well as resources such as lead, zinc, copper and silver.

<span class="mw-page-title-main">Bokkeveld Group</span> Devonian sedimentary rocks in South Africa

The Bokkeveld Group is the second of the three main subdivisions of the Cape Supergroup in South Africa. It overlies the Table Mountain Group and underlies the Witteberg Group. The Bokkeveld Group rocks are considered to range between Lower Devonian (Lochkovian) to Middle Devonian (Givetian) in age.

<span class="mw-page-title-main">Junggar Basin</span> Sedimentary basin in Xinjiang, China

The Junggar Basin, also known as the Dzungarian Basin or Zungarian Basin, is one of the largest sedimentary basins in Northwest China. It is located in Dzungaria in northern Xinjiang, and enclosed by the Tarbagatai Mountains of Kazakhstan in the northwest, the Altai Mountains of Mongolia in the northeast, and the Heavenly Mountains in the south. The geology of Junggar Basin mainly consists of sedimentary rocks underlain by igneous and metamorphic basement rocks. The basement of the basin was largely formed during the development of the Pangea supercontinent during complex tectonic events from Precambrian to late Paleozoic time. The basin developed as a series of foreland basins – in other words, basins developing immediately in front of growing mountain ranges – from Permian time to the Quaternary period. The basin's preserved sedimentary records show that the climate during the Mesozoic era was marked by a transition from humid to arid conditions as monsoonal climatic effects waned. The Junggar basin is rich in geological resources due to effects of volcanism and sedimentary deposition. According to Guinness World Records it is a land location remotest from open sea with great-circle distance of 2,648 km from the nearest open sea at 46°16′8″N86°40′2″E.

References

  1. Sedorko, Daniel; Bosetti, Elvio P.; Netto, Renata G. (January 2018). "An integrative ichnological and taphonomic approach in a transgressive–regressive cycle: a case study from Devonian of Paraná Basin, Brazil". Lethaia. 51 (1): 15–34. Bibcode:2018Letha..51...15S. doi:10.1111/let.12219. ISSN   0024-1164.
  2. "Fossil of the Month: Asterosoma". Kentucky Geological Survey. University of Kentucky. Retrieved 2024-08-11.
  3. Seilacher, Adolf (1975). "Trace Fossils and Problematic Fossils". Invertebrate Paleontology. W. Geological Society of America: 38–177. doi:10.1130/SPE121-p1.
  4. Howard, J.D.; Frey, R.W. (1984). "Characteristic Trace Fossils in Nearshore to Offshore Sequences". Canadian Journal of Earth Sciences. 21: 200–219. doi:10.1139/e84-023.
  5. "Palaeoenvironmental Significance of Ichnofossil Assemblages from the Paleogene Sediments of Inner Fold Belt, Naga Hills, NE India". Journal of the Geological Society of India. 2021. doi:10.1007/s12594-021-1577-1 (inactive 1 November 2024).{{cite web}}: CS1 maint: DOI inactive as of November 2024 (link)
  6. "Fossil of the Month: Asterosoma". Kentucky Geological Survey. University of Kentucky. Retrieved 2024-08-11.
  7. Martino, R.L. (1996). "Trace Fossils from Pennsylvanian Strata of the Appalachian Basin". Geological Society of America. 314: 145–162. doi:10.1130/1996.2314(06) (inactive 1 November 2024).{{cite journal}}: CS1 maint: DOI inactive as of November 2024 (link)

Further reading