Atmospheric diffraction

Last updated
Sunrise animation (15 seconds/frame) with diffraction rings caused by water droplets and only visible when the Sun is near the horizon C solarcorona2003.gif
Sunrise animation (15 seconds/frame) with diffraction rings caused by water droplets and only visible when the Sun is near the horizon

Atmospheric diffraction is manifested in the following principal ways:

Contents

Radio wave type of electromagnetic radiation

Radio waves are a type of electromagnetic radiation with wavelengths in the electromagnetic spectrum longer than infrared light. Radio waves have frequencies as high as 300 gigahertz (GHz) to as low as 30 hertz (Hz). At 300 GHz, the corresponding wavelength is 1 mm, and at 30 Hz is 10,000 km. Like all other electromagnetic waves, radio waves travel at the speed of light. They are generated by electric charges undergoing acceleration, such as time varying electric currents. Naturally occurring radio waves are emitted by lightning and astronomical objects.

Diffraction refers to various phenomena that occur when a wave encounters an obstacle or a slit

Diffraction refers to various phenomena that occur when a wave encounters an obstacle or a slit. It is defined as the bending of waves around the corners of an obstacle or aperture into the region of geometrical shadow of the obstacle. In classical physics, the diffraction phenomenon is described as the interference of waves according to the Huygens–Fresnel principle that treats each point in the wave-front as a collection of individual spherical wavelets. These characteristic behaviors are exhibited when a wave encounters an obstacle or a slit that is comparable in size to its wavelength. Similar effects occur when a light wave travels through a medium with a varying refractive index, or when a sound wave travels through a medium with varying acoustic impedance. Diffraction has an impact on the acoustic space. Diffraction occurs with all waves, including sound waves, water waves, and electromagnetic waves such as visible light, X-rays and radio waves.

Frequency is the number of occurrences of a repeating event per unit of time. It is also referred to as temporal frequency, which emphasizes the contrast to spatial frequency and angular frequency. The period is the duration of time of one cycle in a repeating event, so the period is the reciprocal of the frequency. For example: if a newborn baby's heart beats at a frequency of 120 times a minute, its period—the time interval between beats—is half a second. Frequency is an important parameter used in science and engineering to specify the rate of oscillatory and vibratory phenomena, such as mechanical vibrations, audio signals (sound), radio waves, and light.

However, if the object has a diameter greater than the acoustic wavelength, a 'sound shadow' is cast behind the object where the sound is inaudible. (Note: some sound may be propagated through the object depending on material).

Acoustics science that deals with the study of all mechanical waves in gases, liquids, and solids including vibration, sound, ultrasound and infrasound

Acoustics is the branch of physics that deals with the study of all mechanical waves in gases, liquids, and solids including topics such as vibration, sound, ultrasound and infrasound. A scientist who works in the field of acoustics is an acoustician while someone working in the field of acoustics technology may be called an acoustical engineer. The application of acoustics is present in almost all aspects of modern society with the most obvious being the audio and noise control industries.

Optical atmospheric diffraction

Solar diffraction ring SolarDiffractionCorona.jpg
Solar diffraction ring

When light travels through thin clouds made up of nearly uniform sized water or aerosol droplets or ice crystals, diffraction or bending of light occurs as the light is diffracted by the edges of the particles. This degree of bending of light depends on the frequency (color) of light and the size of the particles. The result is a pattern of rings, which seem to emanate from the Sun, the Moon, a planet, or another astronomical object. The most distinct part of this pattern is a central, nearly white disk. This resembles an atmospheric Airy disc but is not actually an Airy disk. It is distinct from rainbows and halos, which are mainly caused by refraction.

Light electromagnetic radiation in or near visible spectrum

Light is electromagnetic radiation within a certain portion of the electromagnetic spectrum. The word usually refers to visible light, which is the visible spectrum that is visible to the human eye and is responsible for the sense of sight. Visible light is usually defined as having wavelengths in the range of 400–700 nanometres (nm), or 4.00 × 10−7 to 7.00 × 10−7 m, between the infrared and the ultraviolet. This wavelength means a frequency range of roughly 430–750 terahertz (THz).

Water chemical compound

Water is a transparent, tasteless, odorless, and nearly colorless chemical substance, which is the main constituent of Earth's streams, lakes, and oceans, and the fluids of most living organisms. It is vital for all known forms of life, even though it provides no calories or organic nutrients. Its chemical formula is H2O, meaning that each of its molecules contains one oxygen and two hydrogen atoms, connected by covalent bonds. Water is the name of the liquid state of H2O at standard ambient temperature and pressure. It forms precipitation in the form of rain and aerosols in the form of fog. Clouds are formed from suspended droplets of water and ice, its solid state. When finely divided, crystalline ice may precipitate in the form of snow. The gaseous state of water is steam or water vapor. Water moves continually through the water cycle of evaporation, transpiration (evapotranspiration), condensation, precipitation, and runoff, usually reaching the sea.

Aerosol colloid of fine solid particles or liquid droplets, in air or another gas

An aerosol is a suspension of fine solid particles or liquid droplets, in air or another gas. Aerosols can be natural or anthropogenic. Examples of natural aerosols are fog, dust, forest exudates and geyser steam. Examples of anthropogenic aerosols are haze, particulate air pollutants and smoke. The liquid or solid particles have diameters typically <1 μm; larger particles with a significant settling speed make the mixture a suspension, but the distinction is not clear-cut. In general conversation, aerosol usually refers to an aerosol spray that delivers a consumer product from a can or similar container. Other technological applications of aerosols include dispersal of pesticides, medical treatment of respiratory illnesses, and convincing technology. Diseases can also spread by means of small droplets in the breath, also called aerosols.

Lunar diffraction ring Lunarcorona.jpg
Lunar diffraction ring

The left photo shows a diffraction ring around the rising Sun caused by a veil of aerosol. This effect dramatically disappeared when the Sun rose high enough until the pattern was no longer visible on the Earth's surface. This phenomenon is sometimes called the corona effect, not to be confused with the solar corona.

Corona (optical phenomenon) term in meteorology

In meteorology, a corona is an optical phenomenon produced by the diffraction of sunlight or moonlight by individual small water droplets and sometimes tiny ice crystals of a cloud or on a foggy glass surface. In its full form, a corona consists of several concentric, pastel-colored rings around the celestial object and a central bright area called aureole. The aureole is often the only visible part of the corona and has the appearance of a bluish-white disk which fades to reddish-brown towards the edge. The angular diameter of a corona depends on the sizes of the water droplets involved; smaller droplets produce larger coronae. For the same reason, the corona is the most pronounced when the size of the droplets is most uniform. Coronae differ from halos in that the latter are formed by refraction from comparatively large rather than small ice crystals.

On the right is a 1/10-second exposure showing an overexposed full moon. The Moon is seen through thin vaporous clouds, which glow with a bright disk surrounded by an illuminated red ring. A longer exposure would show more faint colors beyond the outside red ring.

Shutter speed

In photography, shutter speed or exposure time is the length of time when the film or digital sensor inside the camera is exposed to light, also when a camera's shutter is open when taking a photograph. The amount of light that reaches the film or image sensor is proportional to the exposure time. ​1500 of a second will let half as much light in as ​1250.

Exposure (photography) amount of light captured by a camera

In photography, exposure is the amount of light per unit area reaching a photographic film or electronic image sensor, as determined by shutter speed, lens aperture and scene luminance. Exposure is measured in lux seconds, and can be computed from exposure value (EV) and scene luminance in a specified region.

Full moon lunar phase: completely illuminated disc

The full moon is the lunar phase when the Moon appears fully illuminated from Earth's perspective. This occurs when Earth is located between the Sun and the Moon. This means that the lunar hemisphere facing Earth – the near side – is completely sunlit and appears as a circular disk, while the far side is dark. The full moon occurs once roughly every month.

Another form of atmospheric diffraction or bending of light occurs when light moves through fine layers of particulate dust trapped primarily in the middle layers of the troposphere. This effect differs from water based atmospheric diffraction because the dust material is opaque whereas water allows light to pass through it. This has the effect of tinting the light the color of the dust particles. This tinting can vary from red to yellow depending on geographical location. the other primary difference is that dust based diffraction acts as a magnifier instead of creating a distinct halo. This occurs because the opaque matter does not share the lensing properties of water. The effect is to make an object visibly larger while being more indistinct as the dust distorts the image. This effect varies largely based on the amount and type of dust in the atmosphere.

Troposphere The lowest layer of the atmosphere

The troposphere is the lowest layer of Earth's atmosphere, and is also where nearly all weather conditions take place. It contains approximately 75% of the atmosphere's mass and 99% of the total mass of water vapor and aerosols. The average height of the troposphere is 18 km in the tropics, 17 km in the middle latitudes, and 6 km in the polar regions in winter. The total average height of the troposphere is 13 km.

Opacity is the measure of impenetrability to electromagnetic or other kinds of radiation, especially visible light. In radiative transfer, it describes the absorption and scattering of radiation in a medium, such as a plasma, dielectric, shielding material, glass, etc. An opaque object is neither transparent nor translucent. When light strikes an interface between two substances, in general some may be reflected, some absorbed, some scattered, and the rest transmitted. Reflection can be diffuse, for example light reflecting off a white wall, or specular, for example light reflecting off a mirror. An opaque substance transmits no light, and therefore reflects, scatters, or absorbs all of it. Both mirrors and carbon black are opaque. Opacity depends on the frequency of the light being considered. For instance, some kinds of glass, while transparent in the visual range, are largely opaque to ultraviolet light. More extreme frequency-dependence is visible in the absorption lines of cold gases. Opacity can be quantified in many ways; for example, see the article mathematical descriptions of opacity.

Magnification process of enlarging something only in appearance, not in physical size

Magnification is the process of enlarging the apparent size, not physical size, of something. This enlargement is quantified by a calculated number also called "magnification". When this number is less than one, it refers to a reduction in size, sometimes called minification or de-magnification.

Radio wave propagation in the ionosphere

The ionosphere is a layer of partially ionized gases high above the majority of the Earth's atmosphere; these gases are ionized by cosmic rays originating on the sun. When radio waves travel into this zone, which commences about 80 kilometers above the earth, they experience diffraction in a manner similar to the visible light phenomenon described above. [1] In this case some of the electromagnetic energy is bent in a large arc, such that it can return to the Earth's surface at a very distant point (on the order of hundreds of kilometers from the broadcast source. More remarkably some of this radio wave energy bounces off the Earth's surface and reaches the ionosphere for a second time, at a distance even farther away than the first time. Consequently, a high powered transmitter can effectively broadcast over 1000 kilometers by using multiple "skips" off of the ionosphere. And, at times of favorable atmospheric conditions good "skip" occurs, then even a low power transmitter can be heard halfway around th world. This often occurs for "novice" radio amateurs "hams" who are limited by law to transmitters with no more than 65 watts. The Kon-Tiki expedition communicated regularly with a 6 watt transmitter from the middle of the Pacific. For more details see the "communications" part of the "Kon-Tiki expedition" entry in Wikipedia.

An exotic variant of this radio wave propagation has been examined to show that, theoretically, the ionospheric bounce could be greatly exaggerated if a high powered spherical acoustical wave were created in the ionosphere from a source on earth. [2]

Acoustical diffraction near the Earth's surface

In the case of sound waves travelling near the Earth's surface, the waves are diffracted or bent as they traverse by a geometric edge, such as a wall or building. This phenomenon leads to a very important practical effect: that we can hear "around corners". Because of the frequencies involved considerable amount of the sound energy (on the order of ten percent) actually travels into this would be sound "shadow zone". Visible light exhibits a similar effect, but, due to its much higher frequency, only a minute amount of light energy travels around a corner.

A useful branch of acoustics dealing with the design of noise barriers examines this acoustical diffraction phenomenon in quantitative detail to calculate the optimum height and placement of a soundwall or berm adjacent to a highway.

This phenomenon is also inherent in calculating the sound levels from aircraft noise, so that an accurate determination of topographic features may be understood. In that way one can produce sound level isopleths, or contour maps, which faithfully depict outcomes over variable terrain.

Bibliography

  1. Leonid M. Brekhovskikh, Waves in Layered Media Academic Press, New York, 1960)
  2. Michael Hogan, Ionospheric Diffraction of VHF Radio Waves, ESL Inc., Palo Alto, California, IR-26 22 May 1967

See also

Related Research Articles

Ionosphere The ionized part of Earths upper atmosphere

The ionosphere is the ionized part of Earth's upper atmosphere, from about 60 km (37 mi) to 1,000 km (620 mi) altitude, a region that includes the thermosphere and parts of the mesosphere and exosphere. The ionosphere is ionized by solar radiation. It plays an important role in atmospheric electricity and forms the inner edge of the magnetosphere. It has practical importance because, among other functions, it influences radio propagation to distant places on the Earth.

Microwave form of electromagnetic radiation

Microwaves are a form of electromagnetic radiation with wavelengths ranging from about one meter to one millimeter; with frequencies between 300 MHz (1 m) and 300 GHz (1 mm). Different sources define different frequency ranges as microwaves; the above broad definition includes both UHF and EHF bands. A more common definition in radio engineering is the range between 1 and 100 GHz. In all cases, microwaves include the entire SHF band at minimum. Frequencies in the microwave range are often referred to by their IEEE radar band designations: S, C, X, Ku, K, or Ka band, or by similar NATO or EU designations.

Wave oscillation that travels through space and matter

In physics, a wave is a disturbance that transfers energy through matter or space, with little or no associated mass transport. Waves consist of oscillations or vibrations of a physical medium or a field, around relatively fixed locations. From the perspective of mathematics, waves, as functions of time and space, are a class of signals.

Atmospheric duct

In telecommunications, an atmospheric duct is a horizontal layer in the lower atmosphere in which the vertical refractive index gradients are such that radio signals are guided or ducted, tend to follow the curvature of the Earth, and experience less attenuation in the ducts than they would if the ducts were not present. The duct acts as an atmospheric dielectric waveguide and limits the spread of the wavefront to only the horizontal dimension.

Surface wave mechanical wave that propagates along the interface between differing media

In physics, a surface wave is a 90 degree wave that propagates along the interface between differing media. A common example is gravity waves along the surface of liquids, such as ocean waves. Gravity waves can also occur within liquids, at the interface between two fluids with different densities. Elastic surface waves can travel along the surface of solids, such as Rayleigh or Love waves. Electromagnetic waves can also propagate as "surface waves" in that they can be guided along a refractive index gradient or along an interface between two media having different dielectric constants. In radio transmission, a ground wave is a guided wave that propagates close to the surface of the Earth.

Inversion (meteorology)

In meteorology, an inversion is a deviation from the normal change of an atmospheric property with altitude. It almost always refers to an inversion of the thermal lapse rate. Normally, air temperature decreases with an increase in altitude. During an inversion, warmer air is held above cooler air; the normal temperature profile with altitude is inverted.

Line-of-sight propagation characteristic of electromagnetic radiation or acoustic wave propagation which means waves which travel in a direct path from the source to the receiver

Line-of-sight propagation is a characteristic of electromagnetic radiation or acoustic wave propagation which means waves travel in a direct path from the source to the receiver. Electromagnetic transmission includes light emissions traveling in a straight line. The rays or waves may be diffracted, refracted, reflected, or absorbed by the atmosphere and obstructions with material and generally cannot travel over the horizon or behind obstacles.

Very low frequency radio waves

Very low frequency or VLF is the ITU designation for radio frequencies (RF) in the range of 3 to 30 kilohertz (kHz), corresponding to wavelengths from 100 to 10 kilometers, respectively. The band is also known as the myriameter band or myriameter wave as the wavelengths range from one to ten myriameters. Due to its limited bandwidth, audio (voice) transmission is highly impractical in this band, and therefore only low data rate coded signals are used. The VLF band is used for a few radio navigation services, government time radio stations and for secure military communication. Since VLF waves can penetrate at least 40 meters (120 ft) into saltwater, they are used for military communication with submarines.

Whistler (radio)

A whistler is a very low frequency or VLF electromagnetic (radio) wave generated by lightning. Frequencies of terrestrial whistlers are 1 kHz to 30 kHz, with a maximum amplitude usually at 3 kHz to 5 kHz. Although they are electromagnetic waves, they occur at audio frequencies, and can be converted to audio using a suitable receiver. They are produced by lightning strikes where the impulse travels along the Earth's magnetic field lines from one hemisphere to the other. They undergo dispersion of several kHz due to the slower velocity of the lower frequencies through the plasma environments of the ionosphere and magnetosphere. Thus they are perceived as a descending tone which can last for a few seconds. The study of whistlers categorizes them into Pure Note, Diffuse, 2-Hop, and Echo Train types.

A skip distance is the distance a radio wave travels, usually including a hop in the ionosphere. A skip distance is a distance on the Earth's surface between the two points where radio waves from a transmitter, refracted downwards by different layers of the ionosphere, fall. It also represents how far a radio wave has travelled per hop on the Earth's surface, for radio waves such as the short wave (SW) radio signals that employ continuous reflections for transmission.

Radio propagation behavior of radio waves as they travel, or are propagated, from one point to another, or into various parts of the atmosphere

Radio propagation is the behavior of radio waves as they travel, or are propagated, from one point to another, or into various parts of the atmosphere. As a form of electromagnetic radiation, like light waves, radio waves are affected by the phenomena of reflection, refraction, diffraction, absorption, polarization, and scattering. Understanding the effects of varying conditions on radio propagation has many practical applications, from choosing frequencies for international shortwave broadcasters, to designing reliable mobile telephone systems, to radio navigation, to operation of radar systems.

Edward Victor Appleton English physicist

Sir Edward Victor Appleton was an English physicist, Nobel Prize winner (1947) and pioneer in radiophysics. He studied, and was also employed as a lab technician, at Bradford College from 1909 to 1911.

Reflection (physics) change in direction of a wavefront at an interface between two different media so that the wavefront returns into the medium from which it originated

Reflection is the change in direction of a wavefront at an interface between two different media so that the wavefront returns into the medium from which it originated. Common examples include the reflection of light, sound and water waves. The law of reflection says that for specular reflection the angle at which the wave is incident on the surface equals the angle at which it is reflected. Mirrors exhibit specular reflection.

Plasma stealth is a proposed process to use ionized gas (plasma) to reduce the radar cross-section (RCS) of an aircraft. Interactions between electromagnetic radiation and ionized gas have been extensively studied for many purposes, including concealing aircraft from radar as stealth technology. Various methods might plausibly be able to form a layer or cloud of plasma around a vehicle to deflect or absorb radar, from simpler electrostatic or radio frequency discharges to more complex laser discharges. It is theoretically possible to reduce RCS in this way, but it may be very difficult to do so in practice. Some Russian systems e.g. the 3M22 Zircon (SS-N-33) missile have been reported to make use of plasma stealth.

A sudden ionospheric disturbance (SID) is an abnormally high ionization/plasma density in the D region of the ionosphere caused by a solar flare and/or solar particle event (SPE). The SID results in a sudden increase in radio-wave absorption that is most severe in the upper medium frequency (MF) and lower high frequency (HF) ranges, and as a result often interrupts or interferes with telecommunications systems.

The Earth–ionosphere waveguide refers to the phenomenon in which certain radio waves can propagate in the space between the ground and the boundary of the ionosphere. Because the ionosphere contains charged particles, it can behave as a conductor. The earth operates as a ground plane, and the resulting cavity behaves as a large waveguide.

In physics, ray tracing is a method for calculating the path of waves or particles through a system with regions of varying propagation velocity, absorption characteristics, and reflecting surfaces. Under these circumstances, wavefronts may bend, change direction, or reflect off surfaces, complicating analysis. Ray tracing solves the problem by repeatedly advancing idealized narrow beams called rays through the medium by discrete amounts. Simple problems can be analyzed by propagating a few rays using simple mathematics. More detailed analysis can be performed by using a computer to propagate many rays.

Ground Wave propagation is a method of radio wave propagation that uses the area between the surface of the earth and the ionosphere for transmission. The ground wave can propagate a considerable distance over the earth's surface particularly in the low frequency and medium frequency portion of the radio spectrum.

Electron precipitation is an atmospheric phenomenon that occurs when previously trapped electrons enter the Earth's atmosphere, thus creating communications interferences and other disturbances. Electrons are trapped in the Van Allen radiation belt by Earth's magnetic fields and begin to spiral around field lines in the radiation belt. They may remain there for an indefinite period of time. When broadband very low frequency (VLF) waves propagate the radiation belts, the electrons exit the radiation belt and "precipitate" into the ionosphere where the electrons will collide with ions. Electron precipitation is regularly linked to ozone depletion. It is often caused by lightning strikes.